Appendix A LEED Checklist

LEED 2009 for New Construction and Major Renovations

Date

Project Name

Project Checklist

1 to 2 1 to 2 Possible Points: 110 12 9 4 Possible Points: Possible Points: Possible Points: Platinum 80 to 110 Low-Emitting Materials—Composite Wood and Agrifiber Products Construction IAQ Management Plan-During Construction Construction IAQ Management Plan—Before Occupancy Certified 40 to 49 points Silver 50 to 59 points Gold 60 to 79 points Low-Emitting Materials—Adhesives and Sealants Indoor Chemical and Pollutant Source Control Environmental Tobacco Smoke (ETS) Control Low-Emitting Materials—Paints and Coatings Controllability of Systems—Thermal Comfort Low-Emitting Materials—Flooring Systems Minimum Indoor Air Quality Performance Materials and Resources, Continued Controllability of Systems-Lighting Innovation in Design: Specific Title Innovation in Design: Specific Title Credit 1.1 Innovation in Design: Specific Title Innovation in Design: Specific Title Innovation in Design: Specific Title Regional Priority: Specific Credit Regional Priority: Specific Credit Regional Priority: Specific Credit Regional Priority: Specific Credit Outdoor Air Delivery Monitoring Thermal Comfort—Verification Innovation and Design Process Indoor Environmental Quality Daylight and Views—Daylight **LEED Accredited Professional** Rapidly Renewable Materials Credit 8.2 Daylight and Views—Views Thermal Comfort—Design Regional Priority Credits Increased Ventilation Regional Materials Recycled Content Certified Wood Credit 1.2 Credit 1.4 Credit 1.5 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.4 Credit 6.1 Credit 6.2 Credit 7.1 Credit 8.1 Credit 1.3 Credit 1.1 Credit 1.3 Credit 3.1 Credit 3.2 Credit 7.2 Credit 1.2 Credit 1.4 Credit 4 Prered 1 Credit 1 Credit 5 Credit 2 Credit 7 Prereq 2 Credit 2 Credit 5 Total Credit 6 z |> 1 to 19 1 to 7 2 to 4 2 to 4 1 to 3 1 to 2 1 to 2 Possible Points: 26 35 9 4 Alternative Transportation—Low-Emitting and Fuel-Efficient Vehicles 3 Possible Points: Possible Points: Possible Points: Building Reuse—Maintain 50% of Interior Non-Structural Elements Alternative Transportation—Bicycle Storage and Changing Rooms Alternative Transportation—Public Transportation Access Building Reuse—Maintain Existing Walls, Floors, and Roof Fundamental Commissioning of Building Energy Systems Development Density and Community Connectivity Site Development—Protect or Restore Habitat Alternative Transportation—Parking Capacity Construction Activity Pollution Prevention Site Development-Maximize Open Space Fundamental Refrigerant Management Storage and Collection of Recyclables Stormwater Design—Quantity Control Water Use Reduction-20% Reduction Innovative Wastewater Technologies Stormwater Design—Quality Control **Enhanced Refrigerant Management** Construction Waste Management Minimum Energy Performance Measurement and Verification Optimize Energy Performance Heat Island Effect—Non-roof Water Efficient Landscaping **Brownfield Redevelopment** On-Site Renewable Energy Light Pollution Reduction **Enhanced Commissioning** Heat Island Effect—Roof **Energy and Atmosphere** Materials and Resources Water Use Reduction Materials Reuse Site Selection Green Power Sustainable Sites Water Efficiency Credit 5.1 Credit 6.1 Credit 7.1 Credit 1.1 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.4 Credit 5.2 Credit 6.2 Credit 1.2 Credit 7.2 Prered 1 Credit 2 Credit 3 Credit 8 Prered 1 Prered 1 Credit 2 Credit 2 Credit 3 Credit 1 Credit 3 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4 Credit 5 Credit 1 Credit 6 |>-

Parenthetical URBEMIS2007 (Version 9.2.4) Assumptions

For: Lakeport Courthouse Date: July 2010

LAND USES

Amount	Land Use Type	Unit Type	Trip Rate
50	Government office building	1,000 square feet	8.06

CONSTRUCTION SOURCES

Year	Duration (months)	Development
2012	8 months	Grading, Trenching, Paving, Building
2013	12 months	Building, Coating
2014	1 month	Building, Coating

Phase 1 - Grading:

Year	Total Acreage Disturbed	Acreage Disturbed Daily	Duration- (days)	Fugitive Dust	Soil Hauling (cubic yards)	Estimated Cut/Fill (cubic yards)
2012	5.74	2	20	Default		

Grading Equipment (URBEMIS2007 Default):

Quantity	Type	Hours of Daily Operation
1	Grader	6
1	Rubber Tired Dozer	6
1	Tractor/Loaders/Backhoe	7
1	Water Trucks	8

Phase 2 - Trenching:

Year	Duration
2012	10 days

Trenching Equipment (URBEMIS2007 Default):

Quantity	Type	Hours of Daily Operation
2	Excavators	8
1	Other General Industrial	8
	Equipment	

Phase 3 - Paving:

Year	Duration (days)	Acres
2012	10	5.74

Equipment (URBEMIS2007 Default):

Quantity	Туре	Hours of Daily Operation
4	Cement and Mortar Mixers	6
1	Paver	7
2	Paving Equipment	6
1	Roller	7

Phase 4 – Building Construction

Duration:

20 months

Equipment (URBEMIS2007 Default):

Quantity	Type	Hours of Daily Operation
1	Crane	4
2	Forklifts	6
1	Tractor/Loader/Backhoe	8

Phase 5 – Architectural Coatings:

Duration – 1.5Months Low VOC coatings (Pursuant to SCAQMD Rule 1113) (URBEMIS2007 default all phases)

Sub- Phase 5 - Worker Commute

(URBEMIS2007 default all phases)

Construction Mitigation:

Refer to URBEMIS2007 file output.

YEAR 2013 AREA SOURCES

Natural Gas Fuel Combustion:

(URBEMIS2007 default all phases)

Hearth Fuel Combustion:

Off

Landscape Fuel Combustion:

Year of Completion	Summer Days
2013	180

Consumer Products:

(URBEMIS2007	default all	phases'
--------------	-------------	---------

Architectural Coating:

(URBEMIS2007 default all phases)

Area Source Mitigation:

Low VOC coatings (Pursuant to SCAQMD Rule 1113) Refer to URBEMIS2007 file output.

YEAR 2013 OPERATIONAL SOURCES

Vehicle Fleet %:

(URBEMIS2007 default all phases)

Year:

Year of Completion – 2013

Trip Characteristics:

(URBEMIS2007 Default all phases)

Temperature Data:

40 to 90 degrees Fahrenheit

Variable Starts:

(URBEMIS2007 default all phases)

Road Dust:

Paved – 100% Unpaved – 0%

Pass By Trips (On/Off):

Off

Double-Counting(On/Off):

Off

Operational Mitigation Measures:

Refer to URBEMIS2007 file output.

7/14/2010 2:43:35 PM

Urbemis 2007 Version 9.2.4

Combined Annual Emissions Reports (Tons/Year)

File Name: I:\pdata\00000100\10P\WPWIN\EddieT\Programs\Air\URBEMIS\URBEMIS2007\Lakeport Courthouse.urb924

Project Name: Lakeport Courthouse

Project Location: California State-wide

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:	calling) cobour

CONSTRUCTION EMISSION ESTIMATES											
	ROG	NOX	잉	<u>807</u>	PM10 Dust PM10 Exhaust	Exhaust	PM10	PM2.5 Dust	PM2.5 Exhaust	PM2.5	CO2
2012 TOTALS (tons/year unmitigated)	0.14	76.0	0.77	0.00	0.46	90.0	0.52	0.10	0.05	0.15	132.04
2012 TOTALS (tons/year mitigated)	0.14	0.97	0.77	0.00	0.19	90.0	0.25	0.04	0.05	0.09	132.04
Percent Reduction	0.00	0.00	0.00	0.00	58.97	00.00	52.57	58.83	0.00	38.35	00:00
2013 TOTALS (tons/year unmitigated)	0.32	1.01	0.99	0.00	00.0	90.0	90.0	0.00	0.05	0.05	170.04
2013 TOTALS (tons/year mitigated)	0.20	1.01	0.99	0.00	00.0	90.0	90.0	0.00	0.05	0.05	170.04
Percent Reduction	37.95	0.00	00:00	0.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00
2014 TOTALS (tons/year unmitigated)	0.35	0.08	0.09	0.00	00.0	00.00	00.00	0.00	00.00	0.00	15.38
2014 TOTALS (tons/year mitigated)	0.21	0.08	0.09	0.00	00.0	00.00	00.00	0.00	00.00	0.00	15.38
Percent Reduction	41.13	0.00	00:00	0.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00

7/14/2010 2:43:35 PM

AREA SOURCE EMISSION ESTIMATES

	ROG	NOX	잉	<u>802</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (tons/year, unmitigated)	90.0	90.06	0.19	0.00	0.00	0.00	73.25
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	XON	잉	302	PM10	PM2.5	C02
TOTALS (tons/year, unmitigated)	0.50	0.73	5.79	0.01	96.0	0.19	532.80
SUM OF AREA SOURCE AND OPERATIONAL EMISSION ESTIMATES	STIMATES						
	ROG	XON	잉	<u>802</u>	PM10	PM2.5	<u>CO2</u>
TOTALS (tons/year, unmitigated)	0.56	0.79	5.98	0.01	96.0	0.19	606.05

Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

PM2.5
PM2.5 Exhaust
PM2.5 Dust
PM10
PM10 Exhaust
PM10 Dust
S02
9
NOX
ROG

Page: 3

7/14/2010 2:43:35 PM

2012	0.14	0.97	0.77	0.00	0.46	90.0	0.52	0.10	0.05	0.15	132.04
Mass Grading 05/01/2012- 05/31/2012	0.03	0.25	0.14	0.00	0.46	0.01	0.47	0.10	0.01	0.11	27.02
Mass Grading Dust	0.00	00.00	00.00	0.00	0.46	0.00	0.46	0.10	0.00	0.10	00:00
Mass Grading Off Road Diesel	0.03	0.25	0.13	0.00	0.00	0.01	0.01	0.00	0.01	0.01	25.84
Mass Grading On Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00:0
Mass Grading Worker Trips	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.18
Trenching 06/01/2012-06/15/2012	0.01	0.08	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	66.6
Trenching Off Road Diesel	0.01	0.08	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.43
Trenching Worker Trips	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.56
Asphalt 06/16/2012-06/30/2012	0.02	60:0	90.0	0.00	0.00	0.01	0.01	0.00	0.01	0.01	9.80
Paving Off-Gas	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving Off Road Diesel	0.01	0.07	0.04	0.00	0.00	0.01	0.01	0.00	0.01	0.01	5.66
Paving On Road Diesel	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.11
Paving Worker Trips	0.00	00.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.02
Building 07/01/2012-01/31/2014	0.08	0.55	0.52	0.00	0.00	0.03	0.03	0.00	0.03	0.03	85.23
Building Off Road Diesel	0.07	0.52	0:30	0.00	0.00	0.03	0.03	0.00	0.03	0.03	58.52
Building Vendor Trips	0.00	0.02	0.02	0.00	0.00	0.00	00.00	0.00	0.00	0.00	5.29
Building Worker Trips	0.01	0.01	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	21.43

7/14/2010 2:43:35 PM

20.0	5	9	9	9	9	9	9.0	0.0	0.00	1 / 0.04
Building 07/01/2012-01/31/2014 0.14	1.01	0.99	0.00	00.00	90.0	90.0	0.00	0.05	0.05	169.83
Building Off Road Diesel 0.12	0.95	0.58	0.00	00.00	90.0	90.0	0.00	0.05	0.05	116.59
Building Vendor Trips 0.00	0.04	0.04	0.00	00.00	00.00	0.00	0.00	0.00	0.00	10.54
Building Worker Trips 0.01	0.02	0.36	0.00	00.00	00.00	0.00	0.00	0.00	0.00	42.70
Coating 12/15/2013-01/31/2014 0.18	00:00	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.21
Architectural Coating 0.18	00.00	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips 0.00	00.00	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.21
2014 0.35	0.08	60.0	0.00	00.00	00.00	0.00	0.00	0.00	0.00	15.38
Building 07/01/2012-01/31/2014 0.01	0.08	0.08	0.00	00.00	00.00	0.00	00.00	0.00	0.00	14.97
Building Off Road Diesel 0.01	0.08	0.05	0.00	00.00	00.00	0.00	00.00	0.00	0.00	10.27
Building Vendor Trips 0.00	00.00	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.93
Building Worker Trips 0.00	00.00	0.03	0.00	00.00	00.00	0.00	0.00	0.00	0.00	3.76
Coating 12/15/2013-01/31/2014 0.34	00:00	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.41
Architectural Coating 0.34	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips 0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.41

Phase Assumptions

Phase: Mass Grading 5/1/2012 - 5/31/2012 - Default Mass Site Grading Description

Total Acres Disturbed: 5.74

Maximum Daily Acreage Disturbed: 2

Fugitive Dust Level of Detail: Default

20 lbs per acre-day

On Road Truck Travel (VMT): 0

Off-Road Equipment:

1 Graders (174 hp) operating at a 0.61 load factor for 6 hours per day

7/14/2010 2:43:35 PM

- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 6 hours per day
- I Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- I Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Trenching 6/1/2012 - 6/15/2012 - Default Trenching Description

Off-Road Equipment:

- 2 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- I Other General Industrial Equipment (238 hp) operating at a 0.51 load factor for 8 hours per day
- I Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 0 hours per day

Phase: Paving 6/16/2012 - 6/30/2012 - Default Paving Description

Acres to be Paved: 5.74

Off-Road Equipment:

- 4 Cement and Mortar Mixers (10 hp) operating at a 0.56 load factor for 6 hours per day
- Pavers (100 hp) operating at a 0.62 load factor for 7 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 6 hours per day
- Rollers (95 hp) operating at a 0.56 load factor for 7 hours per day

Phase: Building Construction 7/1/2012 - 1/31/2014 - Default Building Construction Description

Off-Road Equipment:

- I Cranes (399 hp) operating at a 0.43 load factor for 4 hours per day
- 2 Forklifts (145 hp) operating at a 0.3 load factor for 6 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

Phase: Architectural Coating 12/15/2013 - 1/31/2014 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250 Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Page: 6

7/14/2010 2:43:35 PM

Construction Mitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Annual Tons Per Year, Mitigated

	ROG	NOX	3	<u>807</u>	PM10 Dust	PM10 Exhaust	PM10	PM2.5 Dust	PM2.5 Exhaust	PM2.5	<u>coz</u>
:012	0.14	26.0	0.77	0.00	0.19	90:0	0.25	0.04	0.05	0.09	132.04
Mass Grading 05/01/2012- 05/31/2012	0.03	0.25	0.14	0.00	0.19	0.01	0.20	0.04	0.01	0.05	27.02
Mass Grading Dust	0.00	00.0	0.00	0.00	0.19	0.00	0.19	0.04	0.00	0.04	0.00
Mass Grading Off Road Diesel	0.03	0.25	0.13	0.00	0.00	0.01	0.01	00.00	0.01	0.01	25.84
Mass Grading On Road Diesel	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mass Grading Worker Trips	0.00	00.0	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.18
Trenching 06/01/2012-06/15/2012	0.01	0.08	0.05	0.00	0.00	0.00	00:00	0.00	0.00	0.00	66.6
Trenching Off Road Diesel	0.01	0.08	0.04	0.00	0.00	0.00	00:00	0.00	0.00	0.00	9.43
Trenching Worker Trips	0.00	00.00	0.01	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.56
Asphalt 06/16/2012-06/30/2012	0.02	60.0	90.0	0.00	0.00	0.01	0.01	0.00	0.01	0.01	9.80
Paving Off-Gas	0.01	00.00	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00
Paving Off Road Diesel	0.01	0.07	0.04	0.00	0.00	0.01	0.01	0.00	0.01	0.01	5.66
Paving On Road Diesel	0.00	0.02	0.01	0.00	0.00	0.00	00:00	0.00	0.00	0.00	3.11
Paving Worker Trips	0.00	00.00	0.01	0.00	0.00	0.00	00:00	0.00	0.00	0.00	1.02
Building 07/01/2012-01/31/2014	0.08	0.55	0.52	0.00	0.00	0.03	0.03	0.00	0.03	0.03	85.23
Building Off Road Diesel	0.07	0.52	0.30	0.00	0.00	0.03	0.03	0.00	0.03	0.03	58.52
Building Vendor Trips	0.00	0.02	0.02	0.00	0.00	0.00	00.00	0.00	0.00	0.00	5.29
Building Worker Trips	0.01	0.01	0.20	0.00	00.00	0.00	0.00	0.00	0.00	00.00	21.43

7/14/2010 2:43:35 PM

0.20 1.01 0.99	0.00	0.00	90.0	90.0	0.00	0.05	0.05	170.04
0.14 1.01 0.99	0.00	00.00	90:0	90.0	0.00	0.05	0.05	169.83
0.12 0.95 0.58	0.00	00.00	90.0	90.0	0.00	0.05	0.05	116.59
0.00 0.04 0.04	0.00	00.00	0.00	0.00	0.00	0.00	0.00	10.54
0.01 0.02 0.36	00.00	00.00		00.00	0.00	0.00	0.00	42.70
0.00 0.00 0.00	00.00	00.00	00:00	00.00	0.00	0.00	0.00	0.21
0.00 0.00 0.00	0.00	00.00		00.00	0.00	0.00	0.00	0.00
0.00 0.00 0.00	0.00	00.00		00.00	00.00	0.00	0.00	0.21
0.21 0.08 0.09	0.00	00.00		00.00	00.00	0.00	0.00	15.38
0.01 0.08 0.08	0.00	00.00		00.00	00.00	0.00	0.00	14.97
0.01 0.08 0.05	0.00	0.00		00.00	0.00	0.00	0.00	10.27
0.00 0.00 0.00	0.00	00.00		00.00	0.00	0.00	0.00	0.93
0.00 0.00 0.03	0.00	00.00		00.00	0.00	0.00	0.00	3.76
0.20 0.00 0.00	00.00	00.0	00.0	00.00	00.00	0.00	0.00	0.41
0.20 0.00 0.00	00.00	00.00	00.00	00.00	0.00	0.00	0.00	0.00
0.00 0.00 0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.41
0.00 00.00 00.00 00.00	000000000000000000000000000000000000000			000000000000000000000000000000000000000	0.00	00.0 00.0 00.0 00.0 00.0 00.0 00.0	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Mass Grading 5/1/2012 - 5/31/2012 - Default Mass Site Grading Description

For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

For Unpaved Roads Measures, the Manage haul road dust 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

The following mitigation measures apply to Phase: Architectural Coating 12/15/2013 - 1/31/2014 - Default Architectural Coating Description

7/14/2010 2:43:35 PM

For Residential Architectural Coating Measures, the Residential Exterior: Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

For Residential Architectural Coating Measures, the Residential Interior: Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

For Nonresidential Architectural Coating Measures, the Nonresidential Exterior: Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

For Nonresidential Architectural Coating Measures, the Nonresidential Interior. Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

Area Source Changes to Defaults

7/14/2010 2:43:35 PM

Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

005	532.80	532.80
PM25	0.19	0.19
PM10	96.0	96:0
802	0.01	0.01
00	5.79	5.79
XON	0.73	0.73
ROG	0.50	0.50
Source	Goverment office building	TOTALS (tons/year, unmitigated)

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2012 Season: Annual

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

	Summ	Summary of Land Uses	es S			
Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Goverment office building		8.06	1000 sq ft	20.00	403.00	3,048.70
					403.00	3,048.70
	7	Vehicle Fleet Mix	<u>.×</u>			
Vehicle Type	Percent Type	Гуре	Non-Catalyst	;	Catalyst	Diesel
Light Auto		48.6	0.8	80	0.66	0.2
Light Truck < 3750 lbs		10.9	1.8	80	93.6	9.4
Light Truck 3751-5750 lbs		21.8	0.5	വ	99.5	0.0
Med Truck 5751-8500 lbs		9.6	1.0	0	0.66	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.7	0.0	0	76.5	23.5
Lite-Heavy Truck 10,001-14,000 lbs		0.7	0.0	0	42.9	57.1

Page: 10

7/14/2010 2:43:35 PM

		Vehicle Fleet Mix				
Vehicle Type		Percent Type	Non-Catalyst	O	Catalyst	Diesel
Med-Heavy Truck 14,001-33,000 lbs		0.1	0.0		20.0	80.0
Heavy-Heavy Truck 33,001-60,000 lbs		6.0	0.0		0.0	100.0
Other Bus		0.1	0.0		0.0	100.0
Urban Bus		0.1	0.0		0.0	100.0
Motorcycle		3.5	0.09		40.0	0.0
School Bus		0.1	0.0		0.0	100.0
Motor Home		1.0	0.0		0.06	10.0
		Travel Conditions	tions			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	10.8	7.3	7.5	9.5	7.4	7.4
Rural Trip Length (miles)	16.8	7.1	7.9	14.7	9.9	9.9
Trip speeds (mph)	35.0	35.0	35.0	35.0	35.0	35.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land use)						
Goverment office building				10.0	5.0	85.0
		ctions of connections				

Operational Changes to Defaults

7/14/2010 2:42:55 PM

Urbemis 2007 Version 9.2.4

Combined Summer Emissions Reports (Pounds/Day)

File Name: I:\pdata\00000100\10P\WPWIN\EddieT\Programs\Air\URBEMIS\URBEMIS2007\Lakeport Courthouse.urb924

Project Name: Lakeport Courthouse

Project Location: California State-wide

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Page: 2

7/14/2010 2:42:56 PM

Summary Report:

CONSTRUCTION EMISSION ESTIMATES											
	ROG	NOX	3	<u>802</u>	PM10 Dust PM10 Exhaust	110 Exhaust	PM10	PM2.5 Dust	PM2.5 Exhaust	PM2.5	C02
2012 TOTALS (lbs/day unmitigated)	3.91	22.00	12.46	0.01	40.00	1.31	41.08	8.36	1.20	9.34	2,349.54
2012 TOTALS (lbs/day mitigated)	3.91	22.00	12.46	0.01	16.34	1.31	17.42	3.41	1.20	4.40	2,349.54
2013 TOTALS (lbs/day unmitigated)	30.83	7.75	7.86	00.0	0.02	0.45	0.47	0.01	0.41	0.42	1,336.86
2013 TOTALS (lbs/day mitigated)	10.74	7.75	7.86	0.00	0.02	0.45	0.47	0.01	0.41	0.42	1,336.86
2014 TOTALS (lbs/day unmitigated)	30.75	7.11	7.52	0.00	0.02	0.39	0.41	0.01	0.36	0.36	1,336.98
2014 TOTALS (lbs/day mitigated)	18.10	7.11	7.52	0.00	0.02	0.39	0.41	0.01	0.36	0.36	1,336.98
AREA SOURCE EMISSION ESTIMATES											
		ROG	NOX	3	<u>802</u>	PM10	PM2.5	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)		0.43	0.35	1.83	0.00	0.01	0.01	402.81			
OPERATIONAL (VEHICLE) EMISSION ESTIMATES	ES										
		ROG	NOX	3	802	PM10	PM2.5	C02			
TOTALS (lbs/day, unmitigated)		2.72	3.45	30.72	0.03	5.26	1.02	3,053.05			
SUM OF AREA SOURCE AND OPERATIONAL EMISSION ESTIMATES	MISSION E	STIMATES									
		ROG	NOX	3	202	PM10	PM2.5	C02			
TOTALS (lbs/day, unmitigated)		3.15	3.80	32.55	0.03	5.27	1.03	3,455.86			

Construction Unmitigated Detail Report:

Page: 3

7/14/2010 2:42:56 PM

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

	ROG	NOX	3	802	PM10 Dust	PM10 Exhaust	PM10	PM2.5 Dust	PM2.5 Exhaust	PM2.5	<u>co2</u>
Time Slice 5/1/2012-5/31/2012 Active Days: 23	2.72	22.00	12.46	0.00	40.00	1.07	41.08	8.36	0.99	9.34	2,349.54
Mass Grading 05/01/2012- 05/31/2012	2.72	22.00	12.46	0.00	40.00	1.07	41.08	8.36	0.99	9.34	2,349.54
Mass Grading Dust	00.00	0.00	00.00	0.00	40.00	0.00	40.00	8.35	00:00	8.35	0.00
Mass Grading Off Road Diesel	2.69	21.95	11.51	0.00	00.00	1.07	1.07	0.00	0.99	0.99	2,247.32
Mass Grading On Road Diesel	00.00	0.00	0.00	0.00	0.00	0.00	00:00	0.00	00:00	00:00	0.00
Mass Grading Worker Trips	0.03	0.05	0.94	0.00	00.00	00.00	0.01	0.00	00:00	00:00	102.23
Time Slice 6/1/2012-6/15/2012 Active Days: 11	1.83	15.29	8.95	0.00	0.00	0.74	0.74	0.00	0.68	0.68	1,816.86
Trenching 06/01/2012-06/15/2012	1.83	15.29	8.95	0.00	0.00	0.74	0.74	0.00	0.68	0.68	1,816.86
Trenching Off Road Diesel	1.80	15.24	8.01	0.00	00.00	0.73	0.73	0.00	0.67	0.67	1,714.64
Trenching Worker Trips	0.03	0.05	0.94	0.00	00.00	0.00	0.01	0.00	00:00	0.00	102.23
Time Slice 6/18/2012-6/29/2012 Active Days: 10	3.91	17.20	11.24	0.01	0.03	1.31	1.34	0.01	1.20	1.21	1,959.16
Asphalt 06/16/2012-06/30/2012	3.91	17.20	11.24	0.01	0.03	1.31	1.34	0.01	1.20	1.21	1,959.16
Paving Off-Gas	1.37	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00:00	0.00	0.00
Paving Off Road Diesel	2.23	13.48	8.10	0.00	00.00	1.17	1.17	0.00	1.07	1.07	1,131.92
Paving On Road Diesel	0.25	3.62	1.25	0.01	0.02	0.14	0.16	0.01	0.12	0.13	622.80
Paving Worker Trips	90.0	0.10	1.89	0.00	0.01	0.01	0.02	0.00	00:00	0.01	204.45

Page: 4

5
₫
9
ŝ
4
ä
0
Ξ
ĭ
4
Ξ

1,301.24	1,301.24	893.39	80.73	327.12	1,301.35	1,301.35	893.39	80.74	327.23	1,336.86	1,301.35	893.39	80.74	327.23	35.51	0.00	35.51
0.47	0.47	0.45	0.01	0.01	0.42	0.42	0.39	0.01	0.01	0.42	0.42	0.39	0.01	0.01	0.00	0.00	0.00
0.47	0.47	0.45	0.01	0.01	0.41	0.41	0.39	0.01	0.01	0.41	0.41	0.39	0.01	0.01	00.00	0.00	0.00
0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00
0.53	0.53	0.49	0.02	0.02	0.47	0.47	0.43	0.01	0.02	0.47	0.47	0.43	0.01	0.02	00:00	0.00	0.00
0.51	0.51	0.49	0.01	0.01	0.45	0.45	0.43	0.01	0.01	0.45	0.45	0.43	0.01	0.01	00.00	0.00	0.00
0.02	0.02	0.00	0.00	0.02	0.02	0.02	0.00	0.00	0.02	0.02	0.02	0.00	0.00	0.02	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.89	7.89	4.56	0:30	3.02	7.56	7.56	4.48	0.28	2.79	7.86	7.56	4.48	0.28	2.79	0:30	0.00	0:30
8.37	8.37	7.87	0.34	0.16	7.73	7.73	7.29	0.30	0.15	7.75	7.73	7.29	0.30	0.15	0.02	0.00	0.02
1.16	1.16	1.03	0.03	0.09	1.06	1.06	0.95	0.03	0.09	30.83	1.06	0.95	0.03	0.09	29.76	29.75	0.01
Time Slice 7/2/2012-12/31/2012 Active Days: 131	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Time Slice 1/1/2013-12/13/2013 Active Days: 249	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Time Slice 12/16/2013-12/31/2013 Active Days: 12	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Coating 12/15/2013-01/31/2014	Architectural Coating	Coating Worker Trips

Page: 5

7/14/2010 2:42:56 PM

1,336.9	1,301.	893.3	80.7	327.3	35.5	0.0	35.5
0.36	0.36	0.34	0.01	0.01	00.00	00.00	0.00
0.36	0.36	0.34	0.01	0.01	0.00	0.00	0.00
0.01	0.01	00.00	00.00	0.01	00.00	00.00	0.00
0.41	0.41	0.37	0.01	0.02	0.00	0.00	0.00
0.39	0.39	0.37	0.01	0.01	0.00	0.00	0.00
0.02	0.02	00.00	0.00	0.02	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.52	7.24	4.39	0.26	2.59	0.28	0.00	0.28
7.11	7.09	6.70	0.26	0.13	0.01	0.00	0.01
30.75	0.99	0.88	0.02	0.08	29.76	29.75	0.01
Time Slice 1/1/2014-1/31/2014 Active Days: 23	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Coating 12/15/2013-01/31/2014	Architectural Coating	Coating Worker Trips

8

39 74 33 52 8 52

46

Phase Assumptions

Phase: Mass Grading 5/1/2012 - 5/31/2012 - Default Mass Site Grading Description

Total Acres Disturbed: 5.74

Maximum Daily Acreage Disturbed: 2

Fugitive Dust Level of Detail: Default

20 lbs per acre-day

On Road Truck Travel (VMT): 0

Off-Road Equipment:

1 Graders (174 hp) operating at a 0.61 load factor for 6 hours per day

Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 6 hours per day

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Trenching 6/1/2012 - 6/15/2012 - Default Trenching Description

Off-Road Equipment:

2 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day

1 Other General Industrial Equipment (238 hp) operating at a 0.51 load factor for 8 hours per day

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 0 hours per day

PM2.5

PM2.5 Exhaust

PM2.5 Dust

<u>PM10</u>

PM10 Exhaust

PM10 Dust

<u>S02</u>

8

Š

ROG

Page: 6

7/14/2010 2:42:56 PM

Phase: Paving 6/16/2012 - 6/30/2012 - Default Paving Description

Acres to be Paved: 5.74

Off-Road Equipment:

4 Cement and Mortar Mixers (10 hp) operating at a 0.56 load factor for 6 hours per day

1 Pavers (100 hp) operating at a 0.62 load factor for 7 hours per day

2 Paving Equipment (104 hp) operating at a 0.53 load factor for 6 hours per day

1 Rollers (95 hp) operating at a 0.56 load factor for 7 hours per day

Phase: Building Construction 7/1/2012 - 1/31/2014 - Default Building Construction Description

Off-Road Equipment:

1 Cranes (399 hp) operating at a 0.43 load factor for 4 hours per day

2 Forklifts (145 hp) operating at a 0.3 load factor for 6 hours per day

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

Phase: Architectural Coating 12/15/2013 - 1/31/2014 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250 Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Construction Mitigated Detail Report:

CONSTRU

eg	
tiga	
₹.	
a S	
Pe	
g	
٦ ا	
Je.	
E E	
S	
ATE	
Ĕ	
ES	
<u></u>	
JCTION EMISSION ESTIMATES Summer Pounds Per Day, Mitigated	
<u></u>	
6	
\overline{c}	

Page: 7

_
2
Φ
ဖ
Š
-:
C
4
-::
N
0
$\overline{}$
0
2
=
4
Σ
~

Time Slice 5/1/2012-5/31/2012 Active Days: 23	2.72	22.00	<u>12.46</u>	0.00	<u>16.34</u>	1.07	<u>17.42</u>	3.41	66:0	4.40	2,349.54
Mass Grading 05/01/2012- 05/31/2012	2.72	22.00	12.46	0.00	16.34	1.07	17.42	3.41	0.99	4.40	2,349.54
Mass Grading Dust	0.00	0.00	0.00	00:00	16.34	0.00	16.34	3.41	0.00	3.41	00:00
Mass Grading Off Road Diesel	2.69	21.95	11.51	0.00	0.00	1.07	1.07	0.00	0.99	66.0	2,247.32
Mass Grading On Road Diesel	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mass Grading Worker Trips	0.03	0.05	0.94	0.00	0.00	0.00	0.01	0.00	0.00	0.00	102.23
Time Slice 6/1/2012-6/15/2012 Active Days: 11	1.83	15.29	8.95	0.00	0.00	0.74	0.74	0.00	0.68	0.68	1,816.86
Trenching 06/01/2012-06/15/2012	1.83	15.29	8.95	0.00	0.00	0.74	0.74	0.00	0.68	0.68	1,816.86
Trenching Off Road Diesel	1.80	15.24	8.01	0.00	0.00	0.73	0.73	0.00	0.67	29.0	1,714.64
Trenching Worker Trips	0.03	0.05	0.94	0.00	0.00	0.00	0.01	0.00	0.00	0.00	102.23
Time Slice 6/18/2012-6/29/2012 Active Days: 10	3.91	17.20	11.24	0.01	0.03	1.31	1.34	0.01	1.20	1.21	1,959.16
Asphalt 06/16/2012-06/30/2012	3.91	17.20	11.24	0.01	0.03	1.31	1.34	0.01	1.20	1.21	1,959.16
Paving Off-Gas	1.37	0.00	00.0	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving Off Road Diesel	2.23	13.48	8.10	00:00	0.00	1.17	1.17	0.00	1.07	1.07	1,131.92
Paving On Road Diesel	0.25	3.62	1.25	0.01	0.02	0.14	0.16	0.01	0.12	0.13	622.80
Paving Worker Trips	90.0	0.10	1.89	00:00	0.01	0.01	0.02	0.00	0.00	0.01	204.45
Time Slice 7/2/2012-12/31/2012 Active Days: 131	1.16	8.37	7.89	0.00	0.02	0.51	0.53	0.01	0.47	0.47	1,301.24
Building 07/01/2012-01/31/2014	1.16	8.37	7.89	0.00	0.02	0.51	0.53	0.01	0.47	0.47	1,301.24
Building Off Road Diesel	1.03	7.87	4.56	00.00	0.00	0.49	0.49	0.00	0.45	0.45	893.39
Building Vendor Trips	0.03	0.34	0.30	00.00	0.00	0.01	0.02	0.00	0.01	0.01	80.73
Building Worker Trips	60.0	0.16	3.02	00:00	0.02	0.01	0.02	0.01	0.01	0.01	327.12

Page: 8

_
2
Φ
ဖွ
മ
4,
4:
1,4
4
\sim
_
0
$\overline{}$
0
∾
-
4
$\overline{}$
-
~

1,301.35	1,301.35	893.39	80.74	327.23	1,336.86	1,301.35	893.39	80.74	327.23	35.51	0.00	35.51	1,336.98	1,301.46	893.39	80.74	327.33	35.52	0.00	35.52
0.42	0.42	0.39	0.01	0.01	0.42	0.42	0.39	0.01	0.01	0.00	0.00	0.00	<u>0.36</u>	0.36	0.34	0.01	0.01	0.00	0.00	0.00
0.41	0.41	0.39	0.01	0.01	0.41	0.41	0.39	0.01	0.01	0.00	0.00	0.00	<u>0.36</u>	0.36	0.34	0.01	0.01	0.00	0.00	0.00
0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00
0.47	0.47	0.43	0.01	0.02	0.47	0.47	0.43	0.01	0.02	0.00	0.00	0.00	0.41	0.41	0.37	0.01	0.02	0.00	0.00	0.00
0.45	0.45	0.43	0.01	0.01	0.45	0.45	0.43	0.01	0.01	00:00	0.00	00:00	<u>0.39</u>	0.39	0.37	0.01	0.01	0.00	0.00	0.00
0.02	0.02	00.00	0.00	0.02	0.02	0.02	00.00	0.00	0.02	00.00	0.00	00.00	0.02	0.02	0.00	0.00	0.02	0.00	0.00	0.00
0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.56	7.56	4.48	0.28	2.79	7.86	7.56	4.48	0.28	2.79	0:30	0.00	0:30	7.52	7.24	4.39	0.26	2.59	0.28	0.00	0.28
7.73	7.73	7.29	0:30	0.15	7.75	7.73	7.29	0:30	0.15	0.02	0.00	0.02	7.11	7.09	6.70	0.26	0.13	0.01	0.00	0.01
1.06	1.06	0.95	0.03	0.09	10.74	1.06	0.95	0.03	0.09	89.6	9.67	0.01	18.10	0.99	0.88	0.02	0.08	17.12	17.11	0.01
Time Slice 1/1/2013-12/13/2013 Active Days: 249	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Time Slice 12/16/2013-12/31/2013 Active Days: 12	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Coating 12/15/2013-01/31/2014	Architectural Coating	Coating Worker Trips	Time Slice 1/1/2014-1/31/2014 Active Days: 23	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Coating 12/15/2013-01/31/2014	Architectural Coating	Coating Worker Trips

7/14/2010 2:42:56 PM

Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Mass Grading 5/1/2012 - 5/31/2012 - Default Mass Site Grading Description

For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

For Unpaved Roads Measures, the Manage haul road dust 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

The following mitigation measures apply to Phase: Architectural Coating 12/15/2013 - 1/31/2014 - Default Architectural Coating Description

For Residential Architectural Coating Measures, the Residential Exterior: Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

For Residential Architectural Coating Measures, the Residential Interior. Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

For Nonresidential Architectural Coating Measures, the Nonresidential Exterior: Use Low VOC Coatings mitigation reduces emissions by

ROG: 10%

For Nonresidential Architectural Coating Measures, the Nonresidential Interior. Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

0.29	.12 0.02 1.55 0.00 0.01 0.01 0.00		0.33 0.28 0.00 0.00	ROG NOx CO SO2 PM10 PM2.5
0.35		1.55 0.00	1.55 0.00	0.28 0.00
	Conclimar Droducte			Natural Gas Hearth Landscape

7/14/2010 2:42:56 PM

Area Source Changes to Defaults

Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

,	(((1	
Source	ROG	XOX	0	S02	PM10	PM25	C02
Goverment office building	2.72	3.45	30.72	0.03	5.26	1.02	3,053.05
TOTALS (lbs/day, unmitigated)	2.72	3.45	30.72	0.03	5.26	1.02	3,053.05

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2012 Temperature (F): 85 Season: Summer

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

~
Lano
√ of
nmar
Su

Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT	
Goverment office building		8.06	1000 sq ft	20.00	403.00	3,048.70	
					403.00	3,048.70	
	7	Vehicle Fleet Mix	×I				
Vehicle Type	Percent Type	-ype	Non-Catalyst	±	Catalyst	Diesel	
Light Auto		48.6	0.8	æ	0.66	0.2	
Light Truck < 3750 lbs		10.9	1.8	m	93.6	4.6	
Light Truck 3751-5750 lbs		21.8	0.5	10	99.5	0.0	

Page: 11 7/14/2010 2:42:56 PM

	Catalyst Diesel	0.0	76.5 23.5	42.9 57.1	20.0 80.0	0.0 100.0	0.0 100.0	0.0 100.0	40.0	0.0 100.0	90.0		Commercial	Commute Non-Work Customer	9.5 7.4 7.4	14.7 6.6 6.6	35.0 35.0 35.0			10.0 5.0 85.0	
Mix	Non-Catalyst	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.09	0.0	0.0	tions		Home-Other	7.5	7.9	35.0	49.1			
Vehicle Fleet Mix	Percent Type	9.6	1.7	2.0	1.0	6.0	0.1	0.1	3.5	0.1	1.0	Travel Conditions	Residential	Home-Shop	7.3	7.1	35.0	18.0			
														Home-Work	10.8	16.8	35.0	32.9			
	Vehicle Type	Med Truck 5751-8500 lbs	Lite-Heavy Truck 8501-10,000 lbs	Lite-Heavy Truck 10,001-14,000 lbs	Med-Heavy Truck 14,001-33,000 lbs	Heavy-Heavy Truck 33,001-60,000 lbs	Other Bus	Urban Bus	Motorcycle	School Bus	Motor Home				Urban Trip Length (miles)	Rural Trip Length (miles)	Trip speeds (mph)	% of Trips - Residential	% of Trips - Commercial (by land use)	Goverment office building	

Operational Changes to Defaults

7/14/2010 2:43:27 PM

Urbemis 2007 Version 9.2.4

Combined Winter Emissions Reports (Pounds/Day)

File Name: I:\pdata\00000100\10P\WPWIN\EddieT\Programs\Air\URBEMIS\URBEMIS2007\Lakeport Courthouse.urb924

Project Name: Lakeport Courthouse

Project Location: California State-wide

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Page: 2

7/14/2010 2:43:27 PM	Summary Report:

CONSTRUCTION EMISSION ESTIMATES										
RC	ROG NOX	0	802	PM10 Dust PM10 Exhaust	110 Exhaust	PM10	PM2.5 Dust	PM2.5 Exhaust	PM2.5	C02
2012 TOTALS (lbs/day unmitigated)	3.91 22.00	12.46	0.01	40.00	1.31	41.08	8.36	1.20	9.34	2,349.54
2012 TOTALS (lbs/day mitigated)	3.91 22.00) 12.46	0.01	16.34	1.31	17.42	3.41	1.20	4.40	2,349.54
2013 TOTALS (lbs/day unmitigated)	30.83	2 7.86	0.00	0.02	0.45	0.47	0.0	0.41	0.42	1,336.86
		2	00.00	0.02	0.45	0.47	0.01	0.41	0.42	1,336.86
2014 TOTALS (lbs/day unmitigated)	30.75 7.11	1 7.52	00.00	0.02	0.39	0.41	0.01	0.36	98.0	1,336.98
2014 TOTALS (lbs/day mitigated) 18.	18.10 7.11	7.52	0.00	0.02	0.39	0.41	0.01	0.36	0.36	1,336.98
AREA SOURCE EMISSION ESTIMATES										
	ROG	NOX	0	<u>802</u>	PM10	PM2.5	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)	0.31	0.33	0.28	00.00	0.00	00.0	400.00			
OPERATIONAL (VEHICLE) EMISSION ESTIMATES										
	ROG	NOX	0	<u>802</u>	PM10	PM2.5	<u>CO2</u>			
TOTALS (lbs/day, unmitigated)	2.84	5.02	33.74	0.03	5.26	1.02	2,652.20			
SUM OF AREA SOURCE AND OPERATIONAL EMISSION ESTIMATES	SION ESTIMATES	(0								
	ROG	NOX	9	202	PM10	PM2.5	CO2			
TOTALS (lbs/day, unmitigated)	3.15	5.35	34.02	0.03	5.26	1.02	3,052.20			
Construction Unmitigated Detail Report:										

Page: 3

7/14/2010 2:43:27 PM

CONSTRUCTION EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

	ROG	XON	3	802	PM10 Dust	PM10 Exhaust	PM10	PM2.5 Dust	PM2.5 Exhaust	PM2.5	CO2
Time Slice 5/1/2012-5/31/2012 Active Days: 23	2.72	22.00	12.46	0.00	40.00	1.07	41.08	8.36	66.0	9.34	2,349.54
Mass Grading 05/01/2012- 05/31/2012	2.72	22.00	12.46	0.00	40.00	1.07	41.08	8.36	0.99	9.34	2,349.54
Mass Grading Dust	0.00	0.00	0.00	0.00	40.00	0.00	40.00	8.35	00:00	8.35	00.00
Mass Grading Off Road Diesel	2.69	21.95	11.51	00.00	0.00	1.07	1.07	0.00	0.99	0.99	2,247.32
Mass Grading On Road Diesel	00.00	00.00	0.00	00.00	0.00	00.0	0.00	0.00	00:00	0.00	0.00
Mass Grading Worker Trips	0.03	0.05	0.94	0.00	00.00	00.0	0.01	0.00	00:00	0.00	102.23
Time Slice 6/1/2012-6/15/2012 Active Days: 11	1.83	15.29	8.95	0.00	0.00	0.74	0.74	0.00	89.0	0.68	1,816.86
Trenching 06/01/2012-06/15/2012	1.83	15.29	8.95	0.00	00.00	0.74	0.74	0.00	0.68	0.68	1,816.86
Trenching Off Road Diesel	1.80	15.24	8.01	0.00	00.00	0.73	0.73	0.00	0.67	0.67	1,714.64
Trenching Worker Trips	0.03	0.05	0.94	0.00	00.00	00.0	0.01	0.00	00:00	0.00	102.23
Time Slice 6/18/2012-6/29/2012 Active Days: 10	3.91	17.20	11.24	0.01	0.03	1.31	1.34	0.01	1.20	1.21	1,959.16
Asphalt 06/16/2012-06/30/2012	3.91	17.20	11.24	0.01	0.03	1.31	1.34	0.01	1.20	1.21	1,959.16
Paving Off-Gas	1.37	00.00	0.00	0.00	00.00	00.0	0.00	0.00	00:00	0.00	0.00
Paving Off Road Diesel	2.23	13.48	8.10	0.00	00.00	1.17	1.17	0.00	1.07	1.07	1,131.92
Paving On Road Diesel	0.25	3.62	1.25	0.01	0.02	0.14	0.16	0.01	0.12	0.13	622.80
Paving Worker Trips	90.0	0.10	1.89	0.00	0.01	0.01	0.02	0.00	0.00	0.01	204.45

Page: 4

1,301.24

893.39

80.73

1,301.24

327.12 1,301.35 1,301.35 893.39 80.74 1,301.35

327.23 1,336.86 327.23 35.51

80.74

0.00

35.51

7/14/2010 2:43:27 PM										
Time Slice 7/2/2012-12/31/2012 Active Days: 131	1.16	8.37	7.89	0.00	0.02	0.51	0.53	0.01	0.47	0.47
Building 07/01/2012-01/31/2014	1.16	8.37	7.89	0.00	0.02	0.51	0.53	0.01	0.47	0.47
Building Off Road Diesel	1.03	78.7	4.56	0.00	0.00	0.49	0.49	0.00	0.45	0.45
Building Vendor Trips	0.03	0.34	0:30	0.00	0.00	0.01	0.02	0.00	0.01	0.01
Building Worker Trips	0.09	0.16	3.02	0.00	0.02	0.01	0.02	0.01	0.01	0.01
Time Slice 1/1/2013-12/13/2013 Active Days: 249	1.06	7.73	7.56	0.00	0.02	0.45	0.47	0.01	0.41	0.42
Building 07/01/2012-01/31/2014	1.06	7.73	7.56	0.00	0.02	0.45	0.47	0.01	0.41	0.42
Building Off Road Diesel	0.95	7.29	4.48	0.00	00.00	0.43	0.43	0.00	0.39	0.39
Building Vendor Trips	0.03	0.30	0.28	00.00	0.00	0.01	0.01	0.00	0.01	0.01
Building Worker Trips	60.0	0.15	2.79	00.00	0.02	0.01	0.02	0.01	0.01	0.01
Time Slice 12/16/2013-12/31/2013 Active Days: 12	30.83	7.75	7.86	0.00	0.02	0.45	0.47	0.01	0.41	0.42
Building 07/01/2012-01/31/2014	1.06	7.73	7.56	0.00	0.02	0.45	0.47	0.01	0.41	0.42
Building Off Road Diesel	0.95	7.29	4.48	00.00	00.00	0.43	0.43	00.00	0.39	0.39
Building Vendor Trips	0.03	0.30	0.28	00.00	0.00	0.01	0.01	0.00	0.01	0.01
Building Worker Trips	60.0	0.15	2.79	00.00	0.02	0.01	0.02	0.01	0.01	0.01
Coating 12/15/2013-01/31/2014	29.76	0.02	0:30	00.00	0.00	00.0	0.00	0.00	0.00	00.00
Architectural Coating	29.75	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00
Coating Worker Trips	0.01	0.02	0:30	0.00	0.00	00.00	0.00	0.00	0.00	0.00

Page: 5

7/14/2010 2:43:27 PM

0.01 0.01 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Phase Assumptions

Phase: Mass Grading 5/1/2012 - 5/31/2012 - Default Mass Site Grading Description

Total Acres Disturbed: 5.74

Maximum Daily Acreage Disturbed: 2

Fugitive Dust Level of Detail: Default

20 lbs per acre-day

On Road Truck Travel (VMT): 0 Off-Road Equipment: 1 Graders (174 hp) operating at a 0.61 load factor for 6 hours per day

Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 6 hours per day

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Trenching 6/1/2012 - 6/15/2012 - Default Trenching Description

Off-Road Equipment:

2 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day

1 Other General Industrial Equipment (238 hp) operating at a 0.51 load factor for 8 hours per day

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 0 hours per day

PM2.5 Dust

<u>PM10</u>

PM10 Exhaust

PM10 Dust

<u>807</u>

00

Š

ROG

PM2.5

C02

Page: 6

7/14/2010 2:43:27 PM

Phase: Paving 6/16/2012 - 6/30/2012 - Default Paving Description

Acres to be Paved: 5.74

Off-Road Equipment:

4 Cement and Mortar Mixers (10 hp) operating at a 0.56 load factor for 6 hours per day

1 Pavers (100 hp) operating at a 0.62 load factor for 7 hours per day

2 Paving Equipment (104 hp) operating at a 0.53 load factor for 6 hours per day

1 Rollers (95 hp) operating at a 0.56 load factor for 7 hours per day

Phase: Building Construction 7/1/2012 - 1/31/2014 - Default Building Construction Description

Off-Road Equipment:

1 Cranes (399 hp) operating at a 0.43 load factor for 4 hours per day

2 Forklifts (145 hp) operating at a 0.3 load factor for 6 hours per day

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

Phase: Architectural Coating 12/15/2013 - 1/31/2014 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Construction Mitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Winter Pounds Per Day, Mitigated

Page: 7 7/14/2010 2

5
_
₽.
_
~
2
• •
က
4
2
0
_
↽
0
Ñ
_
4
$\overline{}$

Time Slice 5/1/2012-5/31/2012 Active Davs: 23	2.72	22.00	12.46	00:00	16.34	1.07	17.42	3.41	0.99	4.40	2,349.54
Mass Grading 05/01/2012- 05/31/2012	2.72	22.00	12.46	0.00	16.34	1.07	17.42	3.41	0.99	4.40	2,349.54
Mass Grading Dust	0.00	00.0	0.00	0.00	16.34	0.00	16.34	3.41	00.0	3.41	00.00
Mass Grading Off Road Diesel	2.69	21.95	11.51	0.00	0.00	1.07	1.07	0.00	0.99	0.99	2,247.32
Mass Grading On Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
Mass Grading Worker Trips	0.03	0.05	0.94	0.00	0.00	00.00	0.01	0.00	00.0	0.00	102.23
Time Slice 6/1/2012-6/15/2012 Active Days: 11	1.83	15.29	8.95	0.00	0.00	0.74	0.74	0.00	0.68	0.68	1,816.86
Trenching 06/01/2012-06/15/2012	1.83	15.29	8.95	0.00	0.00	0.74	0.74	0.00	0.68	0.68	1,816.86
Trenching Off Road Diesel	1.80	15.24	8.01	0.00	0.00	0.73	0.73	0.00	0.67	29.0	1,714.64
Trenching Worker Trips	0.03	0.05	0.94	0.00	0.00	0.00	0.01	0.00	00.0	0.00	102.23
Time Slice 6/18/2012-6/29/2012 Active Days: 10	3.91	17.20	11.24	0.01	0.03	1.31	1.34	0.01	1.20	1.21	1,959.16
Asphalt 06/16/2012-06/30/2012	3.91	17.20	11.24	0.01	0.03	1.31	1.34	0.01	1.20	1.21	1,959.16
Paving Off-Gas	1.37	00.0	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00
Paving Off Road Diesel	2.23	13.48	8.10	0.00	0.00	1.17	1.17	0.00	1.07	1.07	1,131.92
Paving On Road Diesel	0.25	3.62	1.25	0.01	0.02	0.14	0.16	0.01	0.12	0.13	622.80
Paving Worker Trips	90.0	0.10	1.89	0.00	0.01	0.01	0.02	0.00	00.00	0.01	204.45
Time Slice 7/2/2012-12/31/2012 Active Days: 131	1.16	8.37	7.89	0.00	0.02	0.51	0.53	0.01	0.47	0.47	1,301.24
Building 07/01/2012-01/31/2014	1.16	8.37	7.89	0.00	0.02	0.51	0.53	0.01	0.47	0.47	1,301.24
Building Off Road Diesel	1.03	78.7	4.56	0.00	0.00	0.49	0.49	0.00	0.45	0.45	893.39
Building Vendor Trips	0.03	0.34	0.30	0.00	0.00	0.01	0.02	0.00	0.01	0.01	80.73
Building Worker Trips	0.09	0.16	3.02	0.00	0.02	0.01	0.02	0.01	0.01	0.01	327.12

Page: 8 7/14/2010 2

_
_
Φ
~
N
က
₹
-:
\sim
0
$\mathbf{-}$
$\overline{}$
0
∾
4
$\overline{}$

1,301.35	1,301.35	893.39	80.74	327.23	1,336.86	1,301.35	893.39	80.74	327.23	35.51	0.00	35.51	1,336.98	1,301.46	893.39	80.74	327.33	35.52	0.00	35.52
0.42	0.42	0.39	0.01	0.01	0.42	0.42	0.39	0.01	0.01	0.00	0.00	0.00	<u>0.36</u>	0.36	0.34	0.01	0.01	0.00	0.00	0.00
0.41	0.41	0.39	0.01	0.01	0.41	0.41	0.39	0.01	0.01	0.00	0.00	00.00	<u>0.36</u>	0.36	0.34	0.01	0.01	0.00	0.00	0.00
0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00
0.47	0.47	0.43	0.01	0.02	0.47	0.47	0.43	0.01	0.02	0.00	0.00	0.00	0.41	0.41	0.37	0.01	0.02	0.00	0.00	0.00
0.45	0.45	0.43	0.01	0.01	0.45	0.45	0.43	0.01	0.01	0.00	0.00	0.00	0.39	0.39	0.37	0.01	0.01	0.00	0.00	0.00
0.02	0.02	00.00	00.00	0.02	0.02	0.02	00.00	00.00	0.02	00.00	00.00	00.00	0.02	0.02	00.00	00.00	0.02	00.00	00.00	00.00
0.00	00.00	00.00	00.00	00.00	00:00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00:00	00.00	00.00	00.00	00.00	00.00	00.00	00.00
7.56	7.56	4.48	0.28	2.79	7.86	7.56	4.48	0.28	2.79	0:30	00:00	0:30	7.52	7.24	4.39	0.26	2.59	0.28	00:00	0.28
7.73	7.73	7.29	0.30	0.15	7.75	7.73	7.29	0.30	0.15	0.02	0.00	0.02	7.11	7.09	6.70	0.26	0.13	0.01	0.00	0.01
1.06	1.06	0.95	0.03	0.09	10.74	1.06	0.95	0.03	0.09	9.68	9.67	0.01	18.10	0.99	0.88	0.02	0.08	17.12	17.11	0.01
Time Slice 1/1/2013-12/13/2013 Active Davs: 249	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Time Slice 12/16/2013-12/31/2013 Active Days: 12	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Coating 12/15/2013-01/31/2014	Architectural Coating	Coating Worker Trips	Time Slice 1/1/2014-1/31/2014 Active Days: 23	Building 07/01/2012-01/31/2014	Building Off Road Diesel	Building Vendor Trips	Building Worker Trips	Coating 12/15/2013-01/31/2014	Architectural Coating	Coating Worker Trips

7/14/2010 2:43:27 PM

Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Mass Grading 5/1/2012 - 5/31/2012 - Default Mass Site Grading Description

For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

For Unpaved Roads Measures, the Manage haul road dust 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

The following mitigation measures apply to Phase: Architectural Coating 12/15/2013 - 1/31/2014 - Default Architectural Coating Description

For Residential Architectural Coating Measures, the Residential Exterior: Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

For Residential Architectural Coating Measures, the Residential Interior. Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

For Nonresidential Architectural Coating Measures, the Nonresidential Exterior: Use Low VOC Coatings mitigation reduces emissions by

ROG: 10%

For Nonresidential Architectural Coating Measures, the Nonresidential Interior. Use Low VOC Coatings mitigation reduces emissions by:

ROG: 10%

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

Source	ROG	NOX	3	<u>807</u>	PM10	PM2.5	C02
Natural Gas	0.02	0.33	0.28	00.00	0.00	00:00	400.00
Hearth							
Landscaping - No Winter Emissions							
Consumer Products	00.00						
Architectural Coatings	0.29						
TOTALS (lbs/day, unmitigated)	0.31	0.33	0.28	00.00	0.00	0.00	400.00

Page: 10

7/14/2010 2:43:27 PM

Area Source Changes to Defaults

Report:
2
쑮
മ്
_
<u> </u>
)eta
~
_
ਲ
뽀
ဣ
.≌′
₹
Unmitigated
⇆
ਲ
⊆
2
ational
ě
ă
\overline{a}
$\overline{}$

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

Source	ROG	XON	8	802	PM10	PM25	C02
Goverment office building	2.84	5.02	33.74	0.03	5.26	1.02	2,652.20
TOTALS (lbs/day, unmitigated)	2.84	5.02	33.74	0.03	5.26	1.02	2,652.20

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2012 Temperature (F): 40 Season: Winter

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

Uses	
Land	
v of	
nmar	
Sur	

Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Goverment office building		8.06	1000 sq ft	50.00	403.00	3,048.70
					403.00	3,048.70
	>	Vehicle Fleet Mix	×I			
Vehicle Type	Percent Type	уре	Non-Catalyst	t 6	Catalyst	Diesel
Light Auto	•	48.6	0.8	_∞	0.66	0.2
Light Truck < 3750 lbs	·	10.9	1.8	ø.	93.6	4.6
Light Truck 3751-5750 lbs		21.8	0.5	2	99.5	0.0

Page: 11

2
☲
~
N
2.5
က
4
7
0
$\overline{}$
0
ত
4
÷
-

	Catalyst Diesel	0.0	76.5 23.5	42.9 57.1	20.0 80.0	0.0 100.0	0.0 100.0	0.0 100.0	40.0	0.0 100.0	90.0		Commercial	Commute Non-Work Customer	9.5 7.4 7.4	14.7 6.6 6.6	35.0 35.0 35.0			10.0 5.0 85.0	
Mix	Non-Catalyst	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.09	0.0	0.0	tions		Home-Other	7.5	7.9	35.0	49.1			
Vehicle Fleet Mix	Percent Type	9.6	1.7	2.0	1.0	6.0	0.1	0.1	3.5	0.1	1.0	Travel Conditions	Residential	Home-Shop	7.3	7.1	35.0	18.0			
														Home-Work	10.8	16.8	35.0	32.9			
	Vehicle Type	Med Truck 5751-8500 lbs	Lite-Heavy Truck 8501-10,000 lbs	Lite-Heavy Truck 10,001-14,000 lbs	Med-Heavy Truck 14,001-33,000 lbs	Heavy-Heavy Truck 33,001-60,000 lbs	Other Bus	Urban Bus	Motorcycle	School Bus	Motor Home				Urban Trip Length (miles)	Rural Trip Length (miles)	Trip speeds (mph)	% of Trips - Residential	% of Trips - Commercial (by land use)	Goverment office building	

Operational Changes to Defaults

```
14: 37: 28
     SCREEN3 MODEL RUN ***
 *** VERSION DATED 96043 ***
C:\Documents and Settings\KCHIENE\My Documents\Lakes\Screen View\ConstructionCO
SIMPLE TERRAIN INPUTS:
   SOURCE TYPE
                                            AREA
   EMI SSI ON RATE (G/(S-M^**2)) = 0.281600E-05
   SOURCE HEIGHT (M)
                                        3.0000
                                =
   LENGTH OF LARGER SI DE (M) =
LENGTH OF SMALLER SI DE (M) =
                                        152. 4100
                                        152. 4100
   RECEPTOR HEIGHT (M) URBAN/RURAL OPTION
                                          1.5000
                                           URBAN
THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.
THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.
   MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION
BUOY. FLUX =
               0.000 \text{ M}^{**}4/\text{S}^{**}3; \text{ MOM. FLUX} = 0.000 \text{ M}^{**}4/\text{S}^{**}2.
*** FULL METEOROLOGY ***
***********
*** SCREEN AUTOMATED DISTANCES ***
*** TERRAIN HEIGHT OF O. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***
  DI ST
           CONC
                              U10M
                                      USTK MIX HT
                                                      PLUME
                                                             MAX DIR
          (UG/M**3)
                      STAB
   (M)
                            (M/S)
                                     (M/S)
                                            (M)
                                                     HT (M)
                                                              (DEG)
          35.00
                              1.0
                                      1. 0 10000. 0
                                                       3.00
                                                                 45.
    1.
          53.96
                                       1. 0 10000. 0
                                                       3.00
   100.
                              1. 0
                                                                 45.
          31. 29
                         5
                                       1. 0 10000. 0
   200.
                                                       3.00
                              1.0
                                                                 45.
   300.
          19. 29
                        5
                               1.0
                                       1. 0 10000. 0
                                                       3.00
                                                                 45.
                         5
5
5
                                       1. 0 10000. 0
1. 0 10000. 0
   400.
           13.60
                               1.0
                                                       3.00
                                                                 45.
           10.25
   500.
                               1.0
                                                       3.00
                                                                 45.
          8.064
                              1.0
                                       1. 0 10000. 0
   600.
                                                       3.00
                                                                 45.
                         5
   700.
          6.547
                              1.0
                                       1.0 10000.0
                                                       3.00
                                                                 42.
                                                       3.00
   800.
          5. 449
                         5
                              1.0
                                       1. 0 10000. 0
                                                                 45.
   900.
          4.627
                              1.0
                                       1. 0 10000. 0
                                                       3.00
                                                                 45.
                                       1. 0 10000. 0
  1000.
          3.995
                               1.0
                                                       3.00
                                                                 45.
MAXI MUM 1- HR CONCENTRATION AT OR BEYOND
                                                1. M:
                  5 1.0 1.0 10000.0
   115.
          56.05
                                                       3.00
                                                                 45.
     *** SUMMARY OF SCREEN MODEL RESULTS ***
                                  DIST TO
 CALCULATI ON
                     MAX CONC
                                            TERRAI N
  PROCEDURE
                                  MAX (M)
                    (UG/M**3)
                                             HT (M)
SIMPLE TERRAIN
                    56. 05
                                     115.
```

```
15:09:59
```

*** VERSION DATED 96043 ***

C:\Documents and Settings\KCHIENE\My Documents\Lakes\Screen View \ConstructionCO

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = AREA

EMISSION RATE (G/(S-M**2)) = 0.497210E-05

SOURCE HEIGHT (M) = 3.0000

LENGTH OF LARGER SIDE (M) = 152.4100

LENGTH OF SMALLER SIDE (M) = 152.4100

RECEPTOR HEIGHT (M) = 1.5000

URBAN/RURAL OPTION = URBAN

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
1.	61.79	5	1.0	1.0	10000.0	3.00	45.
100.	95.28	5	1.0	1.0	10000.0	3.00	45.
200.	55.25	5	1.0	1.0	10000.0	3.00	45.
300.	34.06	5	1.0	1.0	10000.0	3.00	45.
400.	24.01	5	1.0	1.0	10000.0	3.00	45.
500.	18.10	5	1.0	1.0	10000.0	3.00	45.
600.	14.24	5	1.0	1.0	10000.0	3.00	45.
700.	11.56	5	1.0	1.0	10000.0	3.00	42.
800.	9.622	5	1.0	1.0	10000.0	3.00	45.
900.	8.170	5	1.0	1.0	10000.0	3.00	45.
1000.	7.053	5	1.0	1.0	10000.0	3.00	45.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 1. M: 115. 98.96 5 1.0 1.0 10000.0 3.00 45.

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 98.96 115. 0.

```
15:14:17
```

*** VERSION DATED 96043 ***

C:\Documents and Settings\KCHIENE\My Documents\Lakes\Screen View \ConstructionCO

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = AREA

EMISSION RATE (G/(S-M**2)) = 0.928430E-05

SOURCE HEIGHT (M) = 3.0000

LENGTH OF LARGER SIDE (M) = 152.4100

LENGTH OF SMALLER SIDE (M) = 152.4100

RECEPTOR HEIGHT (M) = 1.5000

URBAN/RURAL OPTION = URBAN

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M*4/S*3; MOM. FLUX = 0.000 M*4/S*2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
1.	115.4	5	1.0	1.0	10000.0	3.00	45.
100.	177.9	5	1.0	1.0	10000.0	3.00	45.
200.	103.2	5	1.0	1.0	10000.0	3.00	45.
300.	63.60	5	1.0	1.0	10000.0	3.00	45.
400.	44.84	5	1.0	1.0	10000.0	3.00	45.
500.	33.79	5	1.0	1.0	10000.0	3.00	45.
600.	26.59	5	1.0	1.0	10000.0	3.00	45.
700.	21.59	5	1.0	1.0	10000.0	3.00	42.
800.	17.97	5	1.0	1.0	10000.0	3.00	45.
900.	15.26	5	1.0	1.0	10000.0	3.00	45.
1000.	13.17	5	1.0	1.0	10000.0	3.00	45.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 1. M: 115. 184.8 5 1.0 1.0 10000.0 3.00 45.

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 184.8 115. 0.

```
15:16:34
```

*** VERSION DATED 96043 ***

C:\Documents and Settings\KCHIENE\My Documents\Lakes\Screen View \ConstructionCO

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = AREA

EMISSION RATE (G/(S-M**2)) = 0.211090E-05

SOURCE HEIGHT (M) = 3.0000

LENGTH OF LARGER SIDE (M) = 152.4100

LENGTH OF SMALLER SIDE (M) = 1.5000

RECEPTOR HEIGHT (M) = 1.5000

URBAN/RURAL OPTION = URBAN

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
1.	26.23	5	1.0	1.0	10000.0	3.00	45.
100.	40.45	5	1.0	1.0	10000.0	3.00	45.
200.	23.46	5	1.0	1.0	10000.0	3.00	45.
300.	14.46	5	1.0	1.0	10000.0	3.00	45.
400.	10.20	5	1.0	1.0	10000.0	3.00	45.
500.	7.683	5	1.0	1.0	10000.0	3.00	45.
600.	6.045	5	1.0	1.0	10000.0	3.00	45.
700.	4.908	5	1.0	1.0	10000.0	3.00	42.
800.	4.085	5	1.0	1.0	10000.0	3.00	45.
900.	3.469	5	1.0	1.0	10000.0	3.00	45.
1000.	2.994	5	1.0	1.0	10000.0	3.00	45.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 1. M: 115. 42.02 5 1.0 1.0 10000.0 3.00 45.

CALCULATION MAX CONC DIST TO TERRAIN

PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 42.02 115. 0.

```
15:19:22
```

*** VERSION DATED 96043 ***

C:\Documents and Settings\KCHIENE\My Documents\Lakes\Screen View \ConstructionCO

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = AREA

EMISSION RATE (G/(S-M**2)) = 0.735650E-05

SOURCE HEIGHT (M) = 3.0000

LENGTH OF LARGER SIDE (M) = 152.4100

LENGTH OF SMALLER SIDE (M) = 1.5000

RECEPTOR HEIGHT (M) = 1.5000

URBAN/RURAL OPTION = URBAN

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
1.	91.42	5	1.0	1.0	10000.0	3.00	45.
100.	141.0	5	1.0	1.0	10000.0	3.00	45.
200.	81.74	5	1.0	1.0	10000.0	3.00	45.
300.	50.40	5	1.0	1.0	10000.0	3.00	45.
400.	35.53	5	1.0	1.0	10000.0	3.00	45.
500.	26.78	5	1.0	1.0	10000.0	3.00	45.
600.	21.07	5	1.0	1.0	10000.0	3.00	45.
700.	17.10	5	1.0	1.0	10000.0	3.00	42.
800.	14.24	5	1.0	1.0	10000.0	3.00	45.
900.	12.09	5	1.0	1.0	10000.0	3.00	45.
1000.	10.44	5	1.0	1.0	10000.0	3.00	45.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 1. M: 115. 146.4 5 1.0 1.0 10000.0 3.00 45.

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 146.4 115. 0.

```
15:29:13
```

*** VERSION DATED 96043 ***

C:\Documents and Settings\KCHIENE\My Documents\Lakes\Screen View \ConstructionCO

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = AREA

EMISSION RATE (G/(S-M**2)) = 0.858820E-06

SOURCE HEIGHT (M) = 3.0000

LENGTH OF LARGER SIDE (M) = 152.4100

LENGTH OF SMALLER SIDE (M) = 1.5000

RECEPTOR HEIGHT (M) = 1.5000

URBAN/RURAL OPTION = URBAN

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M*4/S*3; MOM. FLUX = 0.000 M*4/S*2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST	CONC	CEL D	U10M	USTK	MIX HT	PLUME	MAX DIR
(M)	(UG/M**3)	STAB	(M/S)	(M/S)	(M)	HT (M)	(DEG)
1.	10.67	5	1.0	1.0	10000.0	3.00	45.
100.	16.46	5	1.0	1.0	10000.0	3.00	45.
200.	9.543	5	1.0	1.0	10000.0	3.00	45.
300.	5.883	5	1.0	1.0	10000.0	3.00	45.
400.	4.148	5	1.0	1.0	10000.0	3.00	45.
500.	3.126	5	1.0	1.0	10000.0	3.00	45.
600.	2.459	5	1.0	1.0	10000.0	3.00	45.
700.	1.997	5	1.0	1.0	10000.0	3.00	42.
800.	1.662	5	1.0	1.0	10000.0	3.00	45.
900.	1.411	5	1.0	1.0	10000.0	3.00	45.
1000.	1.218	5	1.0	1.0	10000.0	3.00	45.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 1. M: 115. 17.09 5 1.0 1.0 10000.0 3.00 45.

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 17.09 115. 0.

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

```
15:31:32
```

*** VERSION DATED 96043 ***

C:\Documents and Settings\KCHIENE\My Documents\Lakes\Screen View \ConstructionCO

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = AREA

EMISSION RATE (G/(S-M**2)) = 0.119110E-05

SOURCE HEIGHT (M) = 3.0000

LENGTH OF LARGER SIDE (M) = 152.4100

LENGTH OF SMALLER SIDE (M) = 1.5000

RECEPTOR HEIGHT (M) = 1.5000

URBAN/RURAL OPTION = URBAN

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
1.	14.80	5	1.0	1.0	10000.0	3.00	45.
100.	22.82	5	1.0	1.0	10000.0	3.00	45.
200.	13.24	5	1.0	1.0	10000.0	3.00	45.
300.	8.160	5	1.0	1.0	10000.0	3.00	45.
400.	5.753	5	1.0	1.0	10000.0	3.00	45.
500.	4.335	5	1.0	1.0	10000.0	3.00	45.
600.	3.411	5	1.0	1.0	10000.0	3.00	45.
700.	2.769	5	1.0	1.0	10000.0	3.00	42.
800.	2.305	5	1.0	1.0	10000.0	3.00	45.
900.	1.957	5	1.0	1.0	10000.0	3.00	45.
1000.	1.690	5	1.0	1.0	10000.0	3.00	45.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 1. M: 115. 23.71 5 1.0 1.0 10000.0 3.00 45.

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 23.71 115. 0.

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

```
15:33:37
```

*** VERSION DATED 96043 ***

C:\Documents and Settings\KCHIENE\My Documents\Lakes\Screen View \ConstructionCO

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = AREA

EMISSION RATE (G/(S-M**2)) = 0.232790E-06

SOURCE HEIGHT (M) = 3.0000

LENGTH OF LARGER SIDE (M) = 152.4100

LENGTH OF SMALLER SIDE (M) = 1.5000

RECEPTOR HEIGHT (M) = 1.5000

URBAN/RURAL OPTION = URBAN

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
1.	2.893	5	1.0	1.0	10000.0	3.00	45.
100.	4.461	5	1.0	1.0	10000.0	3.00	45.
200.	2.587	5	1.0	1.0	10000.0	3.00	45.
300.	1.595	5	1.0	1.0	10000.0	3.00	45.
400.	1.124	5	1.0	1.0	10000.0	3.00	45.
500.	0.8473	5	1.0	1.0	10000.0	3.00	45.
600.	0.6666	5	1.0	1.0	10000.0	3.00	45.
700.	0.5413	5	1.0	1.0	10000.0	3.00	42.
800.	0.4505	5	1.0	1.0	10000.0	3.00	45.
900.	0.3825	5	1.0	1.0	10000.0	3.00	45.
1000.	0.3302	5	1.0	1.0	10000.0	3.00	45.

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 1. M: 115. 4.633 5 1.0 1.0 10000.0 3.00 45.

CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)

SIMPLE TERRAIN 4.633 115. 0.

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

: Lake County Air Basin Subarea Winter CYr 2015 Default Title : Emfac2007 V2.3 Nov 1 2006

Version :

2010/07/13 16: 15: 33 Run Date :

2015 -- All model years in the range 1971 to 2015 selected Scen Year:

Winter Season Lake (LC) Area

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Winter

Emfac2007 Emission Factors: V2.3 Nov 1 2006

Lake (LC) Lake (LC) Lake (LC)

> Running Exhaust Emissions (grams/mile) Tabl e 1:

Pollutant Name: Reactive Org Gases Temperature: 70F Relative Humidity: 0%

Speed MРН LDA LDT MDT HDT **UBUS** MCY ALL 0.408 0.643 3.992 4.746 0.721 0.646 6. 115 35 0.073 0.125 0.117 0.481 0.971 1.910 0.141

Pollutant Name: Carbon Monoxide Temperature: 70F Relative Humidity: 0%

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5 35	4. 326 2. 230					24. 989 16. 281	

Pollutant Name: Oxides of Nitrogen Temperature: 70F Relative Humidity:

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5	0. 462	0. 967		12. 910	14. 236	1. 338	1. 233
35	0. 266	0. 548		6. 434	8. 101	1. 305	0. 686

Pollutant Name: Carbon Dioxide Temperature: 70F Relative Humidity:

0%

Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5 35					2453. 472 1660. 838		

Pollutant Name: Sulfur Dioxide Temperature: 70F Relative Humidity:

	Speed MPH	LDA	LDT	MDT	HDT	UBUS	МСҮ	ALL	
	5 35	0. 009 0. 003	0. 011 0. 004	0. 016 0. 005	0. 025 0. 012	0. 024 0. 016	0. 003 0. 002	0. 011 0. 004	
0%	Pollutant	Name:	PM2. 5		Т	emperature:	70F	Relative	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	5 35	0. 052 0. 009	0. 093 0. 017	0. 096 0. 018	0. 551 0. 150	0. 226 0. 053	0. 029 0. 013	0. 090 0. 018	
0%	Pollutant	Name:	PM2. 5 - Ti	re Wear	Т	emperature:	70F	Relative	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	5 35	0. 002 0. 002	0. 002 0. 002	0. 002 0. 002	0. 005 0. 005	0. 002 0. 002	0. 001 0. 001	0. 002 0. 002	
0%	Pollutant	Name:	PM2. 5 - Br	ake Wear	Т	emperature:	70F	Relative	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	5 35	0. 005 0. 005	0. 005 0. 005	0. 005 0. 005	0. 008 0. 008	0. 005 0. 005	0. 003 0. 003	0. 005 0. 005	
0%	Pollutant	Name:	Gasoline -	mi/gal	Т	emperature:	70F	Relative	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	5 35	9. 286 28. 445	7. 380 22. 589	4. 903 16. 900	3. 339 16. 898	3. 300 16. 741	28. 296 53. 231	8. 219 24. 931	
0%	Pollutant	Name:	Diesel - n	ni /gal	Т	emperature:	70F	Relative	Humi di ty:
	Speed MPH	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
		28. 298 28. 298	29. 070 29. 070	19. 538 19. 538	4. 688 6. 114	4. 175 4. 175	0. 000 0. 000	15. 502 16. 105	

Title : Lake County Air Basin Subarea Winter CYr 2015 Default Title Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/07/13 16:15:33

Scen Year: 2015 -- All model years in the range 1971 to 2015 selected

: Winter Season : Lake (LC) Area

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Winter Emfac2007 Emission Factors: V2. 3 Nov 1 2006

Lake (LC) Lake (LC) Lake (LC)

Tabl e 2: Starting Emissions (grams/trip)

	Pollutant Name:	Reactive Org Gases	Temperature:	70F	Relative Humidity:
ALL		8	1		J

Ti me mi n	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
1111 11	LDA	LDI	IVIID I	прт	ODOS	WIC I	ALL
5	0. 070	0. 123	0. 115	1. 057	0. 284	0. 851	0. 164
10	0. 124	0. 207	0. 207	1. 329	0. 553	0. 968	0. 249
20	0. 225	0. 362	0.379	1.848	1.049	1. 202	0.409
30	0.316	0. 503	0. 536	2. 335	1. 487	1. 435	0. 555
40	0. 397	0.629	0.679	2. 789	1.868	1. 667	0. 687
50	0.469	0. 739	0.808	3. 211	2. 191	1. 898	0.805
60	0. 529	0.830	0. 920	3. 523	2.456	2.055	0. 901
120	0.669	1.000	1. 232	3.673	2.704	2. 234	1.086
180	0.664	1.008	1. 254	3. 924	2.869	2. 303	1. 106
240	0. 703	1.067	1. 330	4. 170	3.029	2. 457	1. 172
300	0.741	1. 125	1. 404	4.410	3. 183	2.609	1. 237
360	0. 778	1. 181	1. 477	4.646	3. 333	2. 758	1. 301
420	0.814	1. 236	1. 549	4.876	3. 477	2. 905	1. 363
480	0.850	1. 289	1.619	5. 101	3.616	3. 049	1. 423
540	0.884	1. 341	1. 688	5. 320	3.750	3. 192	1. 482
600	0. 917	1. 391	1. 756	5. 535	3. 878	3. 331	1. 540
660	0. 950	1.440	1.822	5. 744	4.001	3. 469	1. 596
720	0. 982	1. 487	1. 887	5. 948	4. 119	3. 604	1, 651

Pollutant Name: Carbon Monoxide Temperature: 70F Relative Humidity:

Α	L	L

Ti me mi n	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5 10 20 30 40 50	0. 716 1. 304 2. 419 3. 451 4. 401 5. 268 6. 052	1. 359 2. 372 4. 285 6. 049 7. 664 9. 129 10. 445	1. 256 2. 292 4. 259 6. 087 7. 778 9. 330 10. 744	10. 818 14. 218 20. 667 26. 647 32. 159 37. 204 41. 781	4. 255 8. 338 15. 984 22. 938 29. 201 34. 773 39. 652	3. 756 4. 086 4. 741 5. 392 6. 037 6. 677 7. 312	1. 651 2. 629 4. 484 6. 200 7. 779 9. 220 10. 524
120	8. 420	13. 774	14. 635 I	48. 918 Page 3	45. 483	10. 593	13. 810

			Em	fac. rts			
180	7. 976	13. 337	14. 422	52. 757	46.812	10. 954	13.652
240	8. 433	14. 039	15. 330	56. 370	48. 186	12. 244	14. 468
300	8.856	14. 697	16. 161	59. 757	49.603	13. 415	15. 227
360	9. 245	15. 313	16. 913	62. 919	51.064	14. 468	15. 928
420	9. 599	15. 886	17. 587	65.854	52. 569	15. 401	16. 572
480	9. 919	16. 417	18. 182	68. 563	54. 118	16. 215	17. 159
540	10. 205	16. 904	18. 700	71. 047	55. 710	16. 911	17. 689
600	10. 456	17. 349	19. 139	73. 304	57. 347	17. 488	18. 161
660	10.672	17. 751	19. 500	75. 336	59. 027	17. 946	18. 576
720	10. 854	18. 110	19. 782	77. 141	60. 751	18. 285	18. 934

Ti me mi n	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5	0. 251	0. 391	1. 005	0. 963	1. 261	0. 175	0. 480
10	0. 288	0.456	1. 123	1.412	1. 900	0. 210	0. 565
20	0. 354	0. 572	1. 332	2. 202	3. 022	0. 271	0. 715
30	0.408	0.667	1. 506	2.847	3. 936	0. 322	0.838
40	0. 451	0. 743	1.646	3. 346	4. 643	0. 362	0. 936
50	0. 483	0. 798	1. 751	3. 699	5. 142	0. 393	1. 008
60	0. 504	0.834	1. 821	3. 907	5. 433	0. 413	1. 053
120	0. 529	0.872	1. 932	3. 936	5. 472	0. 416	1. 099
180	0. 531	0.874	1. 932	3. 919	5. 452	0. 410	1. 099
240	0. 527	0.868	1. 918	3. 893	5. 421	0.402	1. 091
300	0. 522	0. 858	1. 897	3. 858	5. 380	0. 392	1. 080
360	0. 514	0.846	1. 868	3.815	5. 328	0. 380	1.064
420	0. 504	0. 830	1. 831	3. 763	5. 266	0. 366	1. 045
480	0. 493	0.811	1. 787	3. 703	5. 192	0. 350	1. 022
540	0. 479	0. 790	1. 735	3. 635	5. 109	0. 331	0. 995
600	0. 464	0. 765	1. 675	3. 557	5. 014	0. 311	0. 965
660	0. 446	0. 737	1. 608	3. 472	4. 909	0. 288	0. 930
720	0. 427	0. 706	1. 533	3. 377	4. 793	0. 264	0. 892

Pollutant Name: Carbon Dioxide $$\operatorname{\textbf{Temperature:}}$$ 70F Relative Humidity: ALL

Ti me mi n	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5	11. 158	13. 136	19. 045 22. 635 30. 485 39. 228 48. 865 59. 394 70. 816 153. 282 175. 141 196. 663 217. 849 238. 698 259. 211	17. 345	3. 753	17. 843	13. 809
10	13. 297	16. 067		21. 839	7. 485	20. 201	16. 647
20	17. 960	22. 319		30. 700	14. 887	24. 816	22. 728
30	23. 135	29. 093		39. 394	22. 206	29. 297	29. 348
40	28. 822	36. 387		47. 920	29. 442	33. 644	36. 506
50	35. 022	44. 203		56. 279	36. 595	37. 857	44. 203
60	41. 734	52. 539		64. 470	43. 665	41. 935	52. 438
120	89. 824	108. 706		100. 658	74. 266	60. 475	108. 813
180	102. 636	124. 412		112. 595	87. 740	63. 818	124. 192
240	115. 241	139. 770		123. 830	100. 419	66. 965	139. 259
300	127. 639	154. 779		134. 361	112. 302	69. 917	154. 016
360	139. 831	169. 440		144. 190	123. 390	72. 674	168. 461
420	151. 816	183. 753		153. 315	133. 683	75. 236	182. 595
480	163. 595	197. 717	279. 387	161. 738	143. 180	77. 602	196. 419
480	163. 595	197. 717	279. 387	161. 738	143. 180	77. 602	196. 419
540	175. 167	211. 334	299. 227	169. 458	151. 883	79. 772	209. 931
600	186. 532	224. 602	318. 730	176. 475	159. 790	81. 748	223. 132
660	197. 690	237. 522	337. 896	182. 788	166. 901	83. 528	236. 022
				Page 4			

Page 4

Emfac.rts 720 208.642 250.093 356.726 188.399 173.218 85.113 248.601

ALL	Pollutant	Name:	Sulfur Diox	ti de	Te	mperature:	70F	Relative	Humi di ty:
	Ti me mi n	LDA	LDT	MDT	HDT	UBUS	MCY	ALL	
	5 10 20 30 40 50 60 120 180 240 300 360 420 480 540 600 660 720	0. 000 0. 000 0. 000 0. 000 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002	0. 000 0. 000 0. 000 0. 000 0. 000 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 003 0. 003	0. 000 0. 000 0. 000 0. 000 0. 001 0. 001 0. 002 0. 002 0. 002 0. 002 0. 003 0. 003 0. 003 0. 003 0. 003 0. 004 0. 004	0. 000 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002 0. 002 0. 002 0. 003 0. 003 0. 003 0. 003 0. 003	0. 000 0. 000 0. 000 0. 001 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 003 0. 003 0. 003	0. 000 0. 000 0. 000 0. 000 0. 001 0. 001	0. 000 0. 000 0. 000 0. 000 0. 001 0. 001 0. 001 0. 002 0. 002 0. 002 0. 002 0. 002 0. 002 0. 003 0. 003	
ALL	Pollutant	Name:	PM2. 5		Те	mperature:	70F	Relative	Humi di ty:
ALL	Pollutant Time min	Name:	PM2. 5	MDT	Te HDT	mperature: UBUS	70F MCY	Relative ALL	Humi di ty:

Title : Lake County Air Basin Subarea Winter CYr 2015 Default Title Page 5

Version: Emfac2007 V2.3 Nov 1 2006

2010/07/13 16: 15: 33 Run Date :

Scen Year: 2015 -- All model years in the range 1971 to 2015 selected

Winter Season Area Lake (LC)

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Winter

Emfac2007 Emission Factors: V2.3 Nov 1 2006

Lake (LC) Lake (LC) Lake (LC)

> Hot Soak Emissions (grams/trip) Tabl e 4:

Pollutant Name: Reactive Org Gases Temperature: 70F Relative Humidity:

ALL

Ti me mi n	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
5	0. 136	0. 183	0. 058	0. 067	0. 088	0. 203	0. 137
10	0. 252	0. 340	0. 108	0. 123	0. 163	0. 379	0. 254
20	0. 431	0. 582	0. 185	0. 211	0. 278	0. 662	0. 436
30	0. 556	0. 753	0. 240	0. 272	0. 359	0. 872	0. 563
40	0. 603	0. 818	0. 261	0. 295	0. 389	0. 956	0. 612

Hot soak results are scaled to reflect zero emissions for trip lengths of less than 5 minutes (about 25% of in-use trips).

: Lake County Air Basin Subarea Winter CYr 2015 Default Title : Emfac2007 V2.3 Nov 1 2006 : 2010/07/13 16:15:33

Run Date :

2015 -- All model years in the range 1971 to 2015 selected Scen Year:

Season Winter Area Lake (LC)

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Winter Emfac2007 Emission Factors: V2.3 Nov 1 2006

Lake (LC) Lake (LC) Lake (LC)

> Table 5a: Partial Day Diurnal Loss Emissions

(grams/hour)

Pollutant Name: Reactive Org Gases Temperature: ALL Relative Humidity:

ALL

Temp degF	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
70	0. 218	0. 327	0. 113	0. 029	0. 005	0. 452	0. 260

: Lake County Air Basin Subarea Winter CYr 2015 Default Title : Emfac2007 V2.3 Nov 1 2006

Version:

2010/07/13 16: 15: 33 Run Date :

Scen Year: 2015 -- All model years in the range 1971 to 2015 selected

Season Winter Lake (LC) Area

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Winter Emfac2007 Emission Factors: V2.3 Nov 1 2006

Lake (LC) Lake (LC) Lake (LC)

> Table 5b: Multi-Day Diurnal Loss Emissions

(grams/hour)

Pollutant Name: Reactive Org Gases Temperature: ALL Relative Humidity:

ALL

Temp degF LDA LDT MDT HDT **UBUS** MCY ALL 70 0.018 0.025 0.009 0.001 0.002 0.041 0.021

: Lake County Air Basin Subarea Winter CYr 2015 Default Title : Emfac2007 V2.3 Nov 1 2006 : 2010/07/13 16:15:33 Title

Versi on

Run Date:

2015 -- All model years in the range 1971 to 2015 selected Scen Year:

Season Winter Lake (LC) Area

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Winter

Emfac2007 Emission Factors: V2.3 Nov 1 2006

Lake (LC) Lake (LC) Lake (LC)

> Table 6a: Partial Day Resting Loss Emissions

(grams/hour)

Pollutant Name: Reactive Org Gases Temperature: ALL Relative Humidity:

ALL

Temp degF LDA LDT MDT HDT **UBUS** MCY ALL 70 0.083 0.129 0.048 0.013 0.002 0.142 0.100

: Lake County Air Basin Subarea Winter CYr 2015 Default Title : Emfac2007 V2.3 Nov 1 2006 : 2010/07/13 16:15:33

Version:

Run Date :

2015 -- All model years in the range 1971 to 2015 selected Scen Year:

Season Winter Area Lake (LC)

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Winter Emfac2007 Emission Factors: V2.3 Nov 1 2006

Lake (LC) Lake (LC) Lake (LC)

Table 6b: Multi-Day Resting Loss Emissions

(grams/hour)

Pollutant Name: Reactive Org Gases Temperature: ALL Relative Humidity:

ALL

Temp **UBUS** degF LDA LDT MDT HDT MCY ALL 70 0.007 0.010 0.004 0.008 0.001 0.001 0.014

Title : Lake County Air Basin Subarea Winter CYr 2015 Default Title Version : Emfac2007 V2.3 Nov 1 2006

2010/07/13 16: 15: 33 Run Date:

Scen Year: 2015 -- All model years in the range 1971 to 2015 selected

Season Winter Lake (LC) Area

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Winter Emfac2007 Emission Factors: V2.3 Nov 1 2006

Lake (LC) Lake (LC) Lake (LC)

> Tabl e 7: Estimated Travel Fractions

Pollutant Name: Temperature: ALL Relative Humidity:

ALL

	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
%VMT	0. 412	0. 424	0. 116	0. 032	0. 001	0. 015	1. 000
%TRI P	0. 363	0. 383	0. 184	0. 053	0. 000	0. 017	1. 000
%VEH	0. 389	0. 423	0. 095	0. 037	0. 000	0. 056	1. 000

Title : Lake County Air Basin Subarea Winter CYr 2015 Default Title Version : Emfac2007 V2.3 Nov 1 2006 Run Date : 2010/07/13 16:15:33

Scen Year: 2015 -- All model years in the range 1971 to 2015 selected

: Winter Season : Lake (LC) Area

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Winter Emfac2007 Emission Factors: V2. 3 Nov 1 2006

Lake (LC) Lake (LC) Lake (LC)

> Tabl e Evaporative Running Loss Emissions 8:

(grams/minute)

Temperature: 70F Relative Humidity: Pollutant Name: Reactive Org Gases

ALL

Ti me mi n	LDA	LDT	MDT	HDT	UBUS	MCY	ALL
1	0. 030	0. 942	0. 499	1. 233	0. 716	0. 024	0. 510
2	0. 030	0. 493	0. 262	0. 655	0. 710	0.024 0.062	0. 275
$\tilde{\tilde{3}}$	0. 034	0. 347	0. 185	0. 464	0. 260	0. 083	0. 199
	0. 038	0. 276	0. 148	0. 369	0. 205	0. 096	0. 163
4 5	0. 041	0. 234	0. 127	0. 313	0. 172	0. 105	0. 143
10	0. 050	0. 156	0. 087	0. 203	0. 109	0. 132	0. 106
15	0.056	0. 137	0.078	0. 170	0.091	0. 149	0. 098
20	0.061	0. 134	0.077	0. 156	0. 085	0. 163	0.099
25	0.066	0. 138	0.080	0. 150	0.084	0. 176	0. 102
30	0.069	0. 145	0.084	0. 156	0. 088	0. 184	0. 107
35	0.071	0. 151	0. 087	0. 161	0.091	0. 193	0. 111
40	0.073	0. 157	0.091	0. 167	0.095	0. 201	0. 116
45	0.075	0. 163	0.094	0. 172	0.098	0. 209	0. 120
50	0.077	0. 168	0. 097	0. 177	0. 101	0. 215	0. 123
55	0. 078	0. 174	0. 100	0. 182	0. 104	0. 221	0. 126
60	0.079	0. 179	0. 103	0. 187	0. 107	0. 227	0. 130

3. 0. 0 PC (32 BIT) VERSION (C) COPYRIGHT 2000, TRINITY CONSULTANTS

Run Began on 7/13/2010 at 16:30:35

CALI NE4: CALI FORNI A LI NE SOURCE DI SPERSI ON MODEL JUNE 1989 VERSI ON PAGE 1

(WORST CASE ANGLE)

JOB: Bevins-Lakeport RUN: Hour 1 POLLUTANT: Carbon Monoxide

SITE VARIABLES Ι.

U=	0. 5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG =	WORST	CASE	VD =	0.0	CM/S				
CLAS=	6	(F)	VS=	0.0	CM/S				
MIXH =	1000.	M	AMB =	3. 5	PPM				
SI GTH=	5.	DEGREES	TEMP=	15. 0	DEGREE	(C)			

II. LINK VARIABLES

	LI NK	*	LI NK	COORDI	NATES		*			EF	Н	W
	DESCRI PTI ON	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		- *-					*-					
1.	Y SB1	*	684	1256	711	1201	*	AG	262	3. 3	0.0	23. 3
2.	Y SB2	*	711	1201	745	1133	*	AG	220	7. 4	0.0	23. 3
3.	Y SB3	*	745	1133	800	1025	*	AG	226	3. 3	0.0	23. 3
4.	Y SB4	*	800	1025	858	906	*	AG	226	3. 3	0.0	23. 3
5.	Y NB1	*	868	911	813	1024	*	AG	30	3. 3	0.0	23. 3
6.	Y NB2	*	814	1024	761	1138	*	AG	13	3. 3	0.0	23. 3
7.	Y NB3	*	761	1138	728	1205	*	AG	286	3. 3	0.0	23. 3
8.	Y NB4	*	728	1205	700	1263	*	AG	286	3. 3	0.0	23. 3
9.	Y LT1	*	720	1198	753	1134		AG	42	7. 4	0.0	23. 3
10.	Y LT2	*	753	1134	802	1038	*	AG	17	7. 4	0.0	23. 3
11.	X EB1	*	596	1103	682	1125	*	AG	1013	3. 3	0.0	24. 1
12.	X EB2	*	682	1125	750	1141	*	AG	740	7.4	0.0	24. 1
13.	X EB3	*	750	1141	826	1158	*	AG	782	3. 3	0.0	24. 1
14.	X EB4	*	826	1158	923	1182	*	AG	782	3. 3	0.0	24. 1
15.	X WB1	*	924	1170	832	1147	*	AG	385	3. 3	0.0	24. 1
16.	X WB2	*	832	1147	757	1128	*	AG	379	7.4	0.0	24. 1
17.	X WB3	*	757	1128	687	1111	*	AG	396	3. 3	0.0	24. 1
18.	X WB4	*	687	1111	599	1090	*	AG	396	3. 3	0.0	24. 1
19.	X LT1	*	674	1115	753	1134	*	AG	273	7.4	0.0	24. 1
20.	X LT2	*	753	1134	841	1157	*	AG	6	7. 4	0.0	24. 1

III. RECEPTOR LOCATIONS

RECEPTOR		* *	COORDI X	NATES Y	(M) Z
1. Recpt	1	*	805	1099	1. 8
2. Recpt	2	*	691	1157	1. 8
3. Recpt	3	*	729	1093	1. 8
4. Recpt	4	*	778	1179	1. 8

Bevins-Lakeport.lst

IV. MODEL RESULTS (WORST CASE WIND ANGLE)

		*		*	PRED	*			C	ONC/L	I NK			
		*	BRG	*	CONC	*				(PPM)			
	EPTOR				(PPM)						5	6	7	8
		* -		*_		*								
1.	Recpt 1	1 *	289.	*	3.8	*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.	Recpt 2	2 *	110.	*	3. 9	*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.	Recpt 3	3 *	359.	*	3.9	*	0.0	0. 1	0.0	0.0	0.0	0.0	0.0	0.0
4.	Recpt 4	4 *	234.	*	4.0	*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		* CONC/LI NK * CDM									
* (PPM)											
RECEPTOR		*	9	10	11	12	13	14	15	16	
		*									
1. Recpt	1	*	0.0	0.0	0.0	0. 2	0.0	0.0	0.0	0.0	
2. Recpt	2	*	0.0	0.0	0.0	0. 2	0.0	0.0	0.0	0. 1	
3. Recpt	3	*	0.0	0.0	0.0	0. 2	0.0	0.0	0.0	0.0	
4. Recpt											

				ONC/LI PPM)	NK		
RE	CEPTOR		*	17	18	19	20
1.	Recpt	1	*	0. 0	0. 0	0. 1	0. 0
2.	Recpt	2	*	0.0	0.0	0.0	0.0
3.	Recpt	3	*	0.0	0.0	0. 1	0.0
4.	Recpt	4	*			0. 1	0.0

1

Run Ended on 7/13/2010 at 16:30:35

3. 0. 0 PC (32 BIT) VERSION (C) COPYRIGHT 2000, TRINITY CONSULTANTS

Run Began on 7/13/2010 at 16:34:29

CALI NE4: CALI FORNI A LI NE SOURCE DI SPERSI ON MODEL JUNE 1989 VERSI ON PAGE 1

(WORST CASE ANGLE)

JOB: Mai n-Lakeport RUN: Hour 1 POLLUTANT: Carbon Monoxi de

I. SITE VARIABLES

U=	0. 5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG =	WORST	CASE	VD =	0.0	CM/S				
CLAS=	6	(F)	VS=	0.0	CM/S				
MIXH =	1000.	M	AMB =	3. 5	PPM				
SI GTH=	5.	DEGREES	TEMP=	15. 0	DEGREE	(C)			

II. LINK VARIABLES

	LI NK	*	LI NK	COORDI I	NATES		*			EF	Н	W
	DESCRI PTI ON	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		- *-					. *.					
1.	Y SB1	*	684	1256	711	1201	*	AG	683	3. 3	0.0	20. 3
2.	Y SB2	*	711	1201	745	1133	*	AG	647	7. 4	0.0	20. 3
3.	Y SB3	*	745	1133	800	1025	*	AG	647	3. 3	0.0	20. 3
4.	Y SB4	*	800	1025	858	906	*	AG	647	3. 3	0.0	20. 3
5.	Y NB1	*	868	911	813	1024	*	AG	384	3. 3	0.0	20. 3
6.	Y NB2	*	814	1024	761	1138	*	AG	311	3. 3	0.0	20. 3
7.	Y NB3	*	761	1138	728	1205	*	AG	714	3. 3	0.0	20. 3
8.	Y NB4	*	728	1205	700	1263	*	\mathbf{AG}	714	3. 3	0.0	20. 3
9.	Y LT1	*	720	1198	753	1134	*	AG	36	7.4	0.0	20. 3
10.	Y LT2	*	753	1134	802	1038	*	\mathbf{AG}	73	7.4	0.0	20. 3
11.	X EB1	*	596	1103	682	1125	*	AG	521	3. 3	0.0	16. 2
12.	X EB2	*	682	1125	750	1141	*	\mathbf{AG}	118	7.4	0.0	16. 2
13.	X EB3	*	750	1141	826	1158	*	AG	154	3. 3	0.0	16. 2
14.	X EB4	*	826	1158	923	1182	*	AG	154	3. 3	0.0	16. 2
15.	X WB1	*	924	1170	832	1147	*	AG	3	3. 3	0.0	16. 2
16.	X WB2	*	832	1147	757	1128	*	\mathbf{AG}	3	7.4	0.0	16. 2
17.	X WB3	*	757	1128	687	1111	*	\mathbf{AG}	76	3. 3	0.0	16. 2
18.	X WB4	*	687	1111	599	1090	*	\mathbf{AG}	76	3. 3	0.0	16. 2
19.	X LT1	*	674	1115	753	1134	*	AG	403	7.4	0.0	16. 2
20.	X LT2	*	753	1134	841	1157	*	AG	0	7. 4	0. 0	16. 2

III. RECEPTOR LOCATIONS

R	ECEPTOI	R	* *	COORDI X	NATES Y	(M) Z
1.	Recpt	1	*	805	1099	1. 8
2.	Recpt	2	*	691	1157	1.8
3.	Recpt	3	*	729	1093	1.8
4.	Recpt	4	*	778	1179	1.8

Main-Lakeport.lst

IV. MODEL RESULTS (WORST CASE WIND ANGLE)

		*		*	PRED	*			C	ONC/L	I NK			
		*	BRG	*	CONC	*				(PPM)			
	CEPTOR		(DEG)		` '						5	6	7	8
		*		- * -		*								
1.	Recpt	1	* 314.	. *	^k 3. 8	3 *	0.0	0. 2	0.0	0.0	0.0	0.0	0. 1	0.0
2.	Recpt	2	* 139.	*	3. 8	3 *	0.0	0.0	0. 1	0.0	0.0	0.0	0.0	0.0
	Recpt													
4.	Recpt	4	* 232.	, ×	3. 9	*	0.0	0. 1	0.0	0.0	0.0	0.0	0. 1	0.0

			*	CONC/LI NK								
			*		(PPM)							
REG	CEPTOR		*	9	10	11	12	13	14	15	16	
			. *									
1.	Recpt	1	*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2.	Recpt	2	*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3.	Recpt	3	*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Recpt											

	*CONC/LI *(PPM)	I NK	
RECEPTOR	* 17	18 19	20
1. Recpt 1 2. Recpt 2 3. Recpt 3 4. Recpt 4	* 0. 0 * 0. 0	0. 0 0. 1 0. 0 0. 1	0. 0 0. 0

1

Run Ended on 7/13/2010 at 16:34:29

3. 0. 0 PC (32 BIT) VERSION (C) COPYRIGHT 2000, TRINITY CONSULTANTS

Run Began on 7/13/2010 at 16:27:29

CALI NE4: CALI FORNI A LI NE SOURCE DI SPERSI ON MODEL JUNE 1989 VERSI ON PAGE 1

JOB: SR29 NB Ramp-Lakeport Bl vd RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	0. 5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG =	WORST	CASE	VD =	0.0	CM/S				
CLAS=	6	(F)	VS=	0.0	CM/S				
MIXH =	1000.	M	AMB =	3. 5	PPM				
SI GTH=	5.	DEGREES	TEMP =	15. 0	DEGREE	(C)			

II. LINK VARIABLES

	LI NK	*	LI NK	COORDI	NATES	(M)	*			EF	H	W
	DESCRI PTI ON	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		_ *_					. *.					
1.	Li nk A	*	6284	- 181	6284	- 246	*	AG	388	3. 3	0.0	19. 1
2.	Li nk B	*	6284	- 246	6284	- 300	*	AG	388	7.4	0.0	19. 1
3.	Li nk C	*	6284	- 300	6279	- 453	*	AG	572	3. 3	0.0	19. 1
4.	Li nk D	*	6297	- 460	6298	- 378	*	AG	769	3. 3	0.0	19. 1
5.	Li nk E	*	6298	- 378	6298	- 319	*	AG	769	3. 3	0.0	19. 1
6.	Li nk F	*	6298	- 319	6297	- 176	*	AG	769	3. 3	0.0	19. 1
7.	Li nk G	*	6284	- 265	6300	- 314	*	AG	0	7.4	0.0	19. 1
8.	Li nk H	*	6300	- 314	6462	- 325	*	AG	0	3. 3	0.0	23. 7
9.	Li nk I	*	6523	- 313	6380	- 311	*	AG	635	3. 3	0.0	23. 7
10.	Li nk J	*	6380	- 311	6298	- 301	*	AG	451	7.4	0.0	23. 7
11.	Li nk K	*	6370	- 310	6284	- 326	*	AG	184	7.4	0.0	23. 7

III. RECEPTOR LOCATIONS

R	ECEPTOI	₹	* * *	COORDI X	NATES Y	(M) Z
2. 3.	Recpt Recpt Recpt Recpt	2 3	* * *	6325 6315 6243 6246	- 280 - 339 - 327 - 277	1. 7 1. 7 1. 7 1. 7

IV. MODEL RESULTS (WORST CASE WIND ANGLE)

	*	BRG		PRED CONC				C	ONC/L (PPM				
RECEPTOR	*	(DEG)	*	(PPM)	* *	1	2	3	4	´ 5	6	7	8
1. Recpt	1 *	[*] 199.	,	3. 9) *	0. 0	0. 0 Page		0. 0	0. 1	0. 0	0. 0	0. 0

sr29nbramp-lake.lst

```
2. Recpt 2 * 344. * 4.0 * 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 3. Recpt 3 * 83. * 3.9 * 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 4. Recpt 4 * 105. * 3.9 * 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
```

```
*CONC/LINK
*(PPM)

RECEPTOR * 9 10 11

1. Recpt 1 * 0.0 0.1 0.0
2. Recpt 2 * 0.0 0.1 0.1
3. Recpt 3 * 0.1 0.1 0.1
4. Recpt 4 * 0.0 0.2 0.0
```

1

Run Ended on 7/13/2010 at 16: 27: 29

3. 0. 0 PC (32 BIT) VERSION (C) COPYRIGHT 2000, TRINITY CONSULTANTS

Run Began on 7/13/2010 at 16:25:31

CALI NE4: CALI FORNI A LI NE SOURCE DI SPERSI ON MODEL JUNE 1989 VERSI ON PAGE 1

JOB: SR29 SB Ramp-Lakeport Bl vd RUN: Hour 1 (WORST CASE ANGLE) POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U = 0.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG= WORST	CASE	VD =	0.0	CM/S				
CLAS= 6	(F)	VS=	0.0	CM/S				
MI XH = 1000.	M	AMB =	3. 5	PPM				
SI GTH = 5.	DEGREES	TEMP=	15. 0	DEGREE	(C)			

II. LINK VARIABLES

	LI NK	*	LI NK	COORDI	NATES	(M)	*			EF	H	W
	DESCRI PTI ON	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		_ *_					. *.					
1.	Li nk A	*	6284	- 181	6284	- 246	*	AG	572	3. 3	0.0	17. 0
2.	Li nk B	*	6284	- 246	6284	- 300	*	AG	391	7.4	0.0	17. 0
3.	Li nk C	*	6284	- 300	6279	- 453	*	AG	391	3. 3	0.0	17. 0
4.	Li nk D	*	6297	- 460	6298	- 378	*	AG	456	3. 3	0.0	17. 0
5.	Li nk E	*	6298	- 378	6298	- 319	*	AG	456	3. 3	0.0	17. 0
6.	Li nk F	*	6298	- 319	6297	- 176	*	AG	456	3. 3	0.0	17. 0
7.	Li nk G	*	6284	- 265	6300	- 314	*	AG	181	7.4	0.0	17. 0
8.	Li nk H	*	6300	- 314	6462	- 325	*	AG	181	3. 3	0.0	18. 4
9.	Li nk I	*	6523	- 313	6380	- 311	*	AG	0	3. 3	0.0	18. 4
10.	Li nk J	*	6380	- 311	6298	- 301	*	AG	0	7.4	0.0	18. 4
11.	Li nk K	*	6370	- 310	6284	- 326	*	AG	0	7.4	0.0	18. 4

III. RECEPTOR LOCATIONS

R	ECEPTOI	R	* *	COORDI X	NATES Y	(M) Z
1.	Recpt	1	*	6325	- 280	1. 7
2.	Recpt	2	*	6315	- 339	1. 7
3.	Recpt	3	*	6243	- 327	1. 7
4.	Recpt	4	*	6246	- 277	1. 7

IV. MODEL RESULTS (WORST CASE WIND ANGLE)

	*	1 ILLD					CONC/LI NK (PPM)							
RECEPTOR				(PPM) *		1	2	3			6	7	8	
1. Recpt 1	*	253.	k	3. 7	*	0. 0	0. 1 Page		0. 0	0. 0	0. 1	0. 0	0. 0	

```
2. Recpt 2 * 3. Recpt 3 * 4. Recpt 4 *
            338. *
40. *
108. *
                   3.7*0.00.10.00.00.00.00.00.00.00
```

```
*CONC/LI NK
                          * ( PPM)
RECEPTOR
                                           10
                                                      11
1. Recpt 1 * 0.0 0.0 0.0
2. Recpt 2 * 0.0 0.0 0.0
3. Recpt 3 * 0.0 0.0 0.0
4. Recpt 4 * 0.0 0.0 0.0
```

1

Run Ended on 7/13/2010 at 16: 25: 31

Biological Study Report

Lake County Courthouse 675 Lakeport Boulevard, Lakeport, CA

Prepared for:

RBF Consulting 500-01

July 15, 2010

Prepared by:

TABLE OF CONTENTS

1.	INTRODUCTIO)N	1
2.	METHODOLOG	GY AND STAFF QUALIFICATIONS	2
3.	RESULTS		4
	Plant Communi	ties/Wildlife Habitats	4
	Special-Status	Plant Species	7
	Special-Status	Animal Species	10
	Nesting Migrato	ory Birds	11
	Resource-Agen	ncy Permits	11
4.	CONCLUSION	S AND RECOMMENDATIONS	13
5.	REFERENCES	CITED	15
AF	PPENDICES		
	Appendix A.	Figures	
	Appendix B.	Site Photographs	
	Appendix C.	Wildlife Habitat Relationships Report Summary	
	Appendix D	Rarefind (CNDDB) Report Summary	
	Appendix E.	Evaluation of the Potential for Special-Status Species or Other Species Identified by the CNDDB to Occur on the Site	٢
	Appendix F.	Checklist of Vascular Plant Species Observed	
	Appendix G.	Checklist of Wildlife Species Observed	

1. INTRODUCTION

The purpose of this biological study report is to identify and characterize sensitive natural communities and plant and wildlife resources that are known or expected to occur on a ±5.8-acre project site at 675 Lakeport Boulevard, in the City of Lakeport, Lake County. The site, identified as Lake County Assessor's Parcel Number 025-521-410, is being evaluated for potential construction of a new courthouse. As shown in Figure 1 of Appendix A, the site is located in near the center of Section 25, Township 14 North, Range 10 West, of the U.S. Geological Survey's Lakeport 7.5-minute quadrangle. Photographs of the site are provided in Appendix B.

2. METHODOLOGY AND STAFF QUALIFICATIONS

Prior to conducting fieldwork, a biological records search was completed. This consisted of reviewing the California Department of Fish and Game's California Natural Diversity Data Base (CNDDB) as well as available local records. The CNDDB records search covered a 10-mile radius around the site. This entailed review of records for portions of the following quadrangles: Cow Mountain, Upper Lake, Bartlett Mountain, Purdy's Garden, Lakeport, Lucerne, Clearlake Oaks, Hopland, Highland Springs, Kelseyville, and Clearlake Highlands. Available local records consisted of a biological study report and wetland delineation (Northwest Biosurvey, 2006) prepared for a site approximately 0.3 miles to the north of the subject site on Martin Street, and an Initial Study for the same site (City of Lakeport, 2010). The Martin Street site has physical and biological characteristics similar to the subject site, supports several of the same special-status plant species, and was used as a reference site to check the phenology of local special-status plant species.

Upon completion of the pre-field review, a botanical field survey was undertaken in general accordance with *Protocols for Surveying and Evaluating Impacts to Special Status Native Plant Populations and Natural Communities* (DFG, 2009). Because of the potential requirement for frontage improvements on Lakeport Boulevard, lands between the subject parcel and the street were included in the biological study area. The botanical survey was conducted on April 9 and 29, May 17, and June 19, 2010. All of the special-status plant species potentially occurring in the study area would have been evident at the time the fieldwork was conducted. The survey consisted of an intensive and systematic evaluation of the site; the field survey effort included four to six hours of field time during each of the four site visits.

The locations and approximate population numbers/densities of the identified special-status plant populations were determined by gridding each population into a number of small polygons and then estimating the number of plants in each polygon.

The wildlife evaluation was conducted in three phases. The first phase consisted of the records search described above. Under the second phase, the habitats and special habitat elements in the study area were determined through field reconnaissance. A list of wildlife species that could potentially occur in the identified

habitats was then compiled using the DFG's Wildlife Habitat Relationships (WHR) System, Version 8.2 (DFG, 2008). This is a predictive system based on scientific information regarding wildlife species and their known habitat relationships. It is useful as a general pre-field screen and provides a somewhat broader view of special-status species potentially occurring in the study area.

The wildlife survey was conducted on March 17, 2010. Many of the special-status animal species potentially occurring in the study area would have been evident at the time the fieldwork was conducted. The potential presence of species not readily identifiable during the field surveys was determined on the basis of observed habitat characteristics. The initial field effort included approximately three hours of field observations; additional wildlife observations were made during the botanical field survey visits.

The botanical field surveys were conducted by Donald Burk. Mr. Burk has a Bachelor of Arts degree in Biological Sciences and a Master of Science degree in Botany. He has over 25 years of experience in the design and implementation of botanical field studies. He has previously conducted botanical surveys in Lakeport and is familiar with flora of the region as well as state and federal statutes pertaining to special-status species. The wildlife evaluation was conducted by Darrin Doyle. Mr. Doyle has a Bachelor of Science degree in biology, and has 10 years of experience conducting biological surveys in California. He is familiar with wildlife species of the region and their habitat requirements. Mr. Doyle possesses a federal "take" permit for California red-legged frog and vernal pool crustaceans.

3. RESULTS

Plant Communities/Wildlife Habitats

The study site is situated between approximately 1,340 and 1,400 feet above sea level, and is surrounded on three sides by urban development. The site was historically an oak woodland, and was used for agriculture and grazing beginning in the late 1930s; the site was cleared of trees and shrubs in the early 1970s, and was graded prior to 1988 (URS, 2009). Soils on the site are identified as Henneke-Montara-rock outcrop complex, 15 to 50 percent slopes, with a negligible amount of Still loam, stratified substratum, in the extreme northeast corner of the site (USDA, NRCS, 2009). The Henneke-Montara complex consists of very deep, moderately well-drained soils formed in alluvium from mixed rock types. However, grading activities dramatically altered the soils and natural contours of the site. Roughly 20 feet of surface material was removed from the upper portion of the site, resulting in two level terraces.

Small rocks of serpentine origin are exposed on the upper terrace and hillsides, which support a serpentine herb community. The lower terrace supports a disturbed annual grassland. These two communities are described in more detail below; locations of the communities are shown on Figure 3 of Appendix A and photographs are provided in Appendix B. Two small, shallow seasonal waters with rock substrates are present on the upper terrace. Most runoff from the site enters constructed ditches that convey flow to the east. Flow enters the City's storm drain system, which discharges into Clear Lake approximately ¼-mile east of the site.

Annual grassland

Annual grasslands are characterized by a sparse to dense cover of annual grasses with inclusions of numerous species of native annual forbs ("wildflowers"). Germination occurs with the onset of the fall rains; growth, flowering, and seed-set occur from winter through spring. With a few exceptions, the plants are dead through the summer-fall dry season, persisting as seeds. On the subject site, the annual grassland community is best represented on the lower terrace of the site, on the eastern edge of the study area. Common species in this community include wild oats, soft

chess, California meadow barley, cream sacs, winter vetch, Spanish lotus, and various clovers. Although several special-status plant species were observed on the fringe of the annual grassland community, the community itself is not considered unique or sensitive.

High-quality annual grasslands are inhabited by a variety of wildlife species. Common mammals include black-tailed jackrabbit, coyote, gophers, moles, and several species of mice and voles. Snakes are often abundant in annual grasslands, feeding on small rodents. Amphibians are relatively uncommon in annual grasslands; however, species such as the western toad and Pacific treefrog may be locally abundant near aquatic habitats. Annual grassland also provides nesting and foraging habitat for certain migratory birds, including western meadowlarks, various sparrows, western kingbirds, and horned larks. The WHR data base predicts that this habitat type may be inhabited by 83 species of wildlife (Appendix C). However, because the onsite grassland is a small, fragmented relic of the grassland that historically was interspersed among the oak woodland, far fewer animal species are expected to be present. Overall, the onsite grassland has low value to wildlife species.

Serpentine herb community

The onsite serpentine herb community generally consists of a sparse, low-growing cover of annual and perennial forbs and grasses on the upper terrace and hillsides. Serpentine soils have unique chemical properties that prohibit the growth of many common plant species. A number of other plant species have evolved mechanisms allowing them to survive on serpentine soils. The flora of serpentine sites is thus unique and often supports plants of limited distribution, including a number of endemic species. Plant species observed on the site include naked buckwheat, wicker buckwheat, reflexed fescue, serpentine phacelia, fringed checkerbloom, bearded jewelflower, Douglas's sandwort, and Gambel's dwarf milkvetch. As discussed below, four serpentine-adapted special-status plant species were also observed in this community.

With the exception of crevices between boulders, the serpentine herb community lacks sufficient cover objects for most animal species. Accordingly, this habitat type

supports relatively few species of wildlife. Ground squirrels, which are present in small numbers on the site, create their own shelter by burrowing into hillsides or under large boulders. A number of birds may forage in this habitat; gulls, ravens, and crows were observed overhead, and may feed on picnic remains from the adjacent visitor's center. While the serpentine herb community does not provide tree-nesting habitat for birds, ground-nesting species such as the killdeer could potentially nest on the site. Overall, this habitat type has low value to wildlife species. No estimate on the number of animals that may potentially utilize the serpentine herb community is available, as there is no corresponding WHR habitat type for this community.

Site grading resulted in the creation of two very shallow depressions on the western edge of the serpentine herb community. These depressions pond water to a depth of two to three inches. Because of the underlying bedrock, the water ponds for long duration. These features appear to be subject to U.S. Army Corps of Engineers jurisdiction as non-wetland "waters of the United States." They drain to the northwest and southwest corners of the upper terrace and overflow enters small constructed ditches that ultimately discharge to the City's storm drain system. These waters are essentially unvegetated and provide minimal wildlife value. However, they do attract some species, such as killdeer. A delineation of wetlands and other waters on the subject site has been completed by ENPLAN and is presented in a separate report (ENPLAN, 2010).

The serpentine herb community is considered to be a sensitive natural community due to its somewhat restricted distribution and the high potential for endemic plant species to be present. The onsite community has been highly disturbed by grading. Although this has reduced the value of the site for some plant species, it has formed a "serpentine barren" that supports a unique suite of species, including four special-status species. Loss of the serpentine herb community as a result of project development is considered a significant adverse impact. Mitigation for this loss is best considered in conjunction with impacts on the four special-status plant species, and is addressed below.

Special-Status Plant Species

Review of CNDDB records showed that two special-status plant species, green jewel-flower and mayacamas popcorn-flower, have been broadly mapped to include the study area. Twenty-six other special-status plant species are known to occur within a 10-mile radius: Anthony's Peak lupine, beaked tracyina, bent-flowered fiddleneck, Boggs Lake hedge-hyssop, Bolander's horkelia, Brandegee's eriastrum, bristly sedge, Burke's goldfields, Colusa layia, dimorphic snapdragon, eel-grass pondweed, glandular western flax, Koch's cord moss, Konocti manzanita, Napa bluecurls, Norris' beard moss, oval-leaved viburnum, Raiche's manzanita, Rincon Ridge ceanothus, robust monardella, serpentine cryptantha, small-flowered calycadenia, small groundcone, Sonoma canescent manzanita, two-carpellate western flax, and woolly meadowfoam (Appendix D). The potential for each special-status plant species to utilize the study area is evaluated in Appendix E.

The botanical survey confirmed the presence of four special-status plant species on the project site: Colusa layia, bent-flowered fiddleneck, serpentine cryptantha, and Tracy's clarkia (a special-status species not reported in the CNDDB records search). The locations of the plant populations are shown in Figure 3 of Appendix A. A checklist of vascular plant species observed during the botanical field surveys is provided in Appendix F. Data forms documenting the special-status plant occurrences have been submitted to the California Natural Diversity Data Base.

Colusa layia (Layia septentrionalis)

Colusa layia is an annual herb that occurs in oak woodlands, chaparral, valley and foothill grasslands, and in sandy serpentinite. The species is not state or federally listed, but is on CNPS List 1B.2 (Plants Rare, Threatened, or Endangered in California and Elsewhere; Fairly Threatened in California). The species occurs between 300 and 3,600 feet in elevation. A total of 44 populations are reported in CNDDB records. These populations occur in the North Coast Range and Sutter Buttes (Colusa, Glenn, Lake, Mendocino, Napa, Sonoma, Sutter, Tehama, and Yolo counties). Reported population sizes (available for only about 25 percent of the records) range mostly from 100 to 200 plants, with the largest reported population having about 2,000 plants. With

roughly 20,000 to 25,000 plants observed on the subject site, the onsite Colusa layia population is by far the largest of those for which data is available. On the subject site, the species is most abundant on hillsides within the serpentine herb community, with a small number of plants present on the upper and lower terraces.

Bent-flowered fiddleneck (Amsinckia lunaris)

Bent-flowered fiddleneck occurs in cismontane woodlands, and valley and foothill grassland. The species is not state or federally listed, but is on CNPS List 1B.2 (Plants Rare, Threatened, or Endangered in California and Elsewhere; Fairly Threatened in California). The species is reported between 50 and 1,500 feet in elevation. A total of 50 populations are reported in CNDDB records. Populations are known to occur in Lake, Marin, Napa, Colusa, Contra Costa, Alameda, San Benito, Santa Clara, Santa Cruz, Yolo, and San Mateo counties. Reported population sizes (available for only about 35 percent of the records) range mostly from 10 to 300 plants. The largest quantified population size estimate is 3,650 plants, although the plants are noted to be "common" at other sites. Approximately 500 bent-flowered fiddleneck plants were observed on the subject site, primarily growing on hillsides within the serpentine herb community.

Serpentine cryptantha (Cryptantha clevelandii ssp. dissita)

Serpentine cryptantha generally occurs on serpentine rock outcrops in chaparral communities. The species is reported between 1,100 and 2,400 feet in elevation. The species is not state or federally listed, but is on CNPS List 1B.1 (Plants Rare, Threatened, or Endangered in California and Elsewhere; Seriously Threatened in California). A total of 10 populations are reported in CNDDB records. Populations are known to occur in Lake, Mendocino, Napa, and Sonoma counties. Six of the ten populations were observed between 1902 and 1967, the remaining four populations were observed between 1999 and 2003. No population size data is available. Approximately 10,000 serpentine cryptantha plants were observed on the subject site. Most of the plants occur within the serpentine herb community, on the upper terrace and on the hillside just below the upper terrace.

Tracy's clarkia (Clarkia gracilis ssp. tracyi)

Tracy's clarkia generally occurs on serpentine soils in chaparral communities. The species is reported from 200 to 2,200 feet above sea level. The species is not state or federally listed, but is on CNPS List 4.2 (Plants of Limited Distribution (A Watch List); Fairly Threatened in California). Populations are known to occur in Colusa, Humboldt, Lake, Mendocino, Napa, Trinity, and Tehama counties. Because of the lower CNPS status, the CNDDB does not offer online data regarding the number of recorded populations or population sizes. Nearly 10,000 Tracy's clarkia plants were observed on the site. All of these plants were growing on the periphery of the site, on both undisturbed and highly disturbed soils.

As noted above, Colusa layia, serpentine cryptantha, and bent-flowered fiddleneck are on the California Native Plant Society's List 1B. Although not state or federally listed, plants with this CNPS listing status are generally considered to qualify as "endangered, rare, or threatened" under Section 15380(d) of the California Environmental Quality Act (CEQA) Guidelines and thus require consideration during CEQA review. Tracy's clarkia is on CNPS List 4; plants of this status rarely qualify for state listing, but may be locally significant. As such, potential impacts to this species should also be evaluated during the CEQA process.

Because detailed site development plans have not yet been prepared, the extent of impacts to the serpentine herb community and the four onsite special-status plant species cannot be quantified. However, in general terms, site development has a high potential to adversely affect these resources. It appears that Tracy's clarkia, which is the least sensitive of the plants, would be least affected because it primarily occurs on the periphery of the site. Serpentine cryptantha, which is the most sensitive of the four species on the site, is the most centrally located and would be the most difficult to avoid during site development. Because all four of the special-status plant species have an affinity for serpentine soils, mitigation for the loss of the plants would also provide at least some mitigation for the loss of the serpentine herb community.

Department of Fish and Game staff were contacted following discovery of the special-status plant populations. However, the DFG has not conducted a field review of

the site or provided guidance as to potential mitigation strategies. Because full avoidance of the special-status plant populations and serpentine herb community does not appear to be possible, we recommend that the project proponent prepare a mitigation plan acceptable to DFG prior to project construction. Mitigation would likely include avoidance of at least some of the onsite serpentine herb community and associated special-status plant populations. Detailed mapping of the extent and densities of the special-status plant communities prepared as part of the botanical study (Figure 3 of Appendix A) will assist in preparing a site design that minimizes impacts to the populations. We recommend that the mitigation plan be prepared as early as possible, in conjunction with preparation of site design and development plans. Other options for mitigation include preservation of other local populations of these special-status plants, restoration of degraded populations on other sites in the area, and/or creation or new populations.

Special-Status Animal Species

Review of CNDDB records showed that one special-status animal species, American badger, has been broadly mapped as occurring within the study area. In addition, eight other special-status animal species are known to occur within a 10-mile radius: Clear Lake hitch, foothill yellow-legged frog, grasshopper sparrow, Pacific fisher, Sacramento perch, Townsend's big-eared bat, tricolored blackbird, and western pond turtle (Appendix D). The CNDDB records search also identified seven non-status animal species within the search radius: *Calasellus californicus*, Bell's sage sparrow, blennosperma vernal pool andrenid bee, double-crested cormorant, great blue heron, osprey, and silver-haired bat.

The potential for each special-status animal species to utilize the study area is evaluated in Appendix E. No special-status animal species were observed in the study area during the wildlife evaluation. However, as documented in Appendix E, two special-status animal species, grasshopper sparrow and Townsend's big-eared bat, as well as the non-status silver-haired bat could potentially utilize the site as some point during their life cycles. A checklist of wildlife species observed at the site is presented in Appendix G.

The grasshopper sparrow, a migratory bird, has a low potential to nest in the onsite annual grassland community. Potential adverse effects on nesting grasshopper sparrows can be avoided through proper timing of vegetation removal (see Nesting Migratory Birds below).

Townsend's big-eared bat and silver-haired bat could potentially forage on the site. However, they are very unlikely to roost on the site, given the lack of suitable roosting sites. Because suitable roosting habitat is much more available on other local sites and similar or higher quality foraging habitat is widely available, site development would have a negligible effect on these bat species; no mitigation is warranted.

Nesting Migratory Birds

Although no bird nests were observed in the study area during the field inspections, it is possible that migratory birds, particularly ground-nesting species, could nest on the study area in future years. The federal Migratory Bird Treaty Act requires that nesting migratory birds not be adversely affected by human activities. To ensure compliance with the Act, vegetation should be removed from the project area outside of the nesting season. In the local area, most birds nest between March 1 and July 31. Accordingly, the potential for adversely affecting nesting birds can be greatly minimized by removing vegetation before March 1 or after July 31. If this is not possible, a nesting survey should be conducted within two weeks prior to vegetation removal. If active nests are present, work within 500 feet of the nest(s) should be postponed until the young have fledged, unless a smaller nest buffer zone is authorized by the DFG.

Resource-Agency Permit Requirements

If the Corps of Engineers confirms that the small depressions and constructed ditches are waters subject to federal jurisdiction, a Department of the Army permit would be required prior to fill of the features. As a condition of the Department of the Army permit, issuance of a Water Quality Certification by the Regional Water Quality Control Board would also be required. It is unlikely that a Streambed or Lakebed Alteration Agreement would be required by the Department of Fish and Game; however, we recommend this be confirmed through consultation with Department staff. As for any

project involving more than one acre of surface disturbance, a General Construction Activity Storm Water Permit must be obtained from the State Water Resources Control Board; this requires preparation and implementation of a Storm Water Pollution Prevention Plan. Project implementation would also necessitate obtaining other permits (e.g., encroachment permits, air quality permits), but these involve issues beyond the scope of this document.

4. CONCLUSIONS AND RECOMENDATIONS

In summary, we find that the study area supports non-wetland "waters of the United States," a unique serpentine herb community, and four special-status plant species: Colusa layia, serpentine cryptantha, bent-flowered fiddleneck, and Tracy's clarkia. In addition, two special-status animal species (grasshopper sparrow and Townsend's big-eared bat), the non-status silver-haired bat, and nesting migratory birds could potentially utilize the site at some point during their life cycle.

Mitigation is not warranted for the bat species because they are unlikely to roost on the site and foraging habitat is widely available. Mitigation is not warranted for Tracy's clarkia given its relative abundance and low listing status; however, mitigation for the serpentine herb community and other three special-status plants is expected to offset the loss of Tracy's clarkia. Implementation of the following measures would reduce the remaining biological impacts to a level below that of significance.

- 1. Obtain Required Resource-Agency Permits. The project proponent shall obtain all necessary resource-agency permits prior to initiating any grading or construction activities within "waters of the United States." The required permits may include a Department of the Army Nationwide Permit from the U.S. Army Corps of Engineers, Water Quality Certification from the Regional Water Quality Control Board, and possibly a Streambed Alteration Agreement from the California Department of Fish and Game.
- 2. Avoid/Minimize/Offset the Loss of the Serpentine Herb Community and Associated Special-Status Plants. The project proponent shall prepare a mitigation plan identifying specific impacts of the proposed courthouse project on the serpentine herb community, Colusa layia, serpentine cryptantha, and bent-flowered fiddleneck. The plan shall include measures to avoid and minimize impacts to these resources through careful site design and establishment of onsite avoidance areas. To the extent feasible, Tracy's clarkia shall also be avoided/protected. If avoidance is not possible or does not provide sufficient mitigation, other mitigation measures shall be designated in the plan, including preservation of offsite serpentine habitats and special-status plant populations, restoration of degraded habitats on other local sites capable of supporting the sensitive resources, and/or creation of new habitats capable of supporting the sensitive resources. The mitigation plan shall be submitted to the California Department of Fish and Game for review, and must be approved in writing by DFG prior to initiation of site construction activities.

3. Avoid Disturbance of Nesting Migratory Birds, Including Grasshopper Sparrow. If feasible, vegetation removal shall be conducted between August 1 and February 28. If vegetation removal must be conducted between March 1 and July 31, a nesting bird survey shall be conducted within two weeks prior to initiation of work; if active nests are present, work within 500 feet of the nest(s) shall be postponed until the young have fledged, unless a smaller nest buffer zone is authorized by the DFG.

5. REFERENCES CITED

- California Department of Fish and Game. 2010. California Natural Diversity Data Base, RareFind Printout, March 2010 Data.
 ______. 2009. Protocols for Surveying and Evaluating Impacts to Special Status Native Plant Populations and Natural Communities.
 http://nrm.dfg.ca.gov/documents/docviewer.aspx
 ______. 2008. California Interagency Wildlife Task Group. California Wildlife Habitat Relationships Systems, Version 8.2, personal computer version. Sacramento, California.
- City of Lakeport. 2010. Mitigated Negative Declaration and Initial Environmental Study, Lakeport Pacific Associates. AR 10-03 / ARC 10-02 / ER 10-02.
- ENPLAN. 2010. Pre-jurisdictional Delineation Report: Lake County Courthouse Site, 675 Lakeport Boulevard, Lakeport, California. Unpublished report on file with ENLAN.
- Northwest Biosurvey. June 30, 2006. Biological Assessment with Botanical Survey and Wetland Delineation for the Scott Johnson Property, APN 025-431-35. http://www.cityoflakeport.com/departments/docs.aspx>
- URS Corporation. December 2009. Final Draft Phase I Environmental Site
 Assessment Report: Proposed New Lakeport Courthouse 675 Lakeport
 Boulevard Site. 675 Lakeport Boulevard, Lakeport CA 95453. Unpublished
 document on file with the Judicial Council of California, Administrative Office of
 the Courts.
- U.S. Department of Agriculture, Natural Resources Conservation Service. 2009. Web Soil Survey, August 31, 2009 Map Data. ">http://websoilsurvey.nrcs.usda.gov/app/.>

Appendix A

Figures

Figure 2

Project APE and Area Surveyed

Appendix B

Site Photographs

Site Photographs

Annual Grassland (front) and Serpentine Herb (back) Communities 3/17/10

Annual Grassland Community 6/17/10

Serpentine Herb Community on Upper Terrace 3/17/10

Serpentine Herb Community on Undisturbed Slope 6/17/10

Ponded Water on Upper Terrace 2/8/10

Constructed Drainage Ditch 4/29/10

Bent-flowered Fiddleneck 4/9/10

Colusa Layia 5/19/10

Serpentine Cryptantha 6/17/10

Serpentine Cryptantha on Hillside 6/17/10

Tracy's Clarkia 6/17/10

Tracy's Clarkia Habitat 6/17/10

Appendix C

Wildlife Habitat Relationships Report Summary

WHR SPECIES SUMMARY REPORT (VERSION 8.2)

Lake County Courthouse 675 Lakeport Boulevard, Lakeport, CA

STATUS

ID SPECIES NAME

<u>1D</u>	SPECIES NAME							, I A							
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
A007	California newt							7							
A043	Foothill yellow-legged frog							7				11	12		
A046	Bullfrog							•					_	\vdash	14
A071	California red-legged frog		2					7							
R004	Western pond turtle							7				11	12	\vdash	\vdash
R036	Western skink							7				11	12		
												11	40		\vdash
R048	Ringneck snake							_					12	\vdash	
R057	Gopher snake							7							\vdash
R059	California mountain kingsnake	L.						7					12		
R061	Common garter snake	1		3		5		7							
B051	Great blue heron													13	
B052	Great egret													13	
B071	Snow goose														14
B075	Canada goose														14
B077	Green-winged teal														14
B079	Mallard														14
B080	Northern pintail														14
B083	Cinnamon teal														14
B084	Northern shoverler														14
B085	Gadwall														14
B086	Eurasian wigeon														14
B087	American widgeon														14
B094	Lesser scaup														14
B110	Osprey													13	ĖН
B111	White-tailed kite					5									
B113	Bald eagle			3		5								13	\vdash
B114	Northern harrier							7						13	
B114	Ferruginous hawk							'				11		\vdash	
B124	Golden eagle					5						11		13	\vdash
B120	•			3		5						11	12		
	Peregrine falcon			3		5							12	13	4.4
B133	Ring-necked pheasant							_							14
B134	Sooty grouse							7						\vdash	14
B138	Wild turkey							_						\vdash	14
B140	California quail							7						\vdash	14
B141	•														14
B149	American coot													$ldsymbol{ldsymbol{ldsymbol{eta}}}$	14
B255	Mourning dove														14
B269	Burrowing owl							7				11			
B272	Long-eared owl							7							
B273	Short-eared owl							7							
B338	Purple martin							7							
B342	Bank swallow				4										
B353	American crow														14
B410	Loggerhead shrike	1						7							
B461	Common yellowthroat							7							
B487	Rufous-crowned sparrow							7							П
B499	Savannah sparrow			3				7							
B501	Grasshopper sparrow							7							\Box
B505	Song sparrow							7							\vdash
_555		Ц	Ь		Ь			•			L				لب

ID SPECIES NAME B519 Red-winged blackbird B520 Tricolored blackbird B522 Yellow-headed blackbird M001 Virginia opossum M006 Ornate shrew M018 Broad-footed mole M023 Yuma myotis M026 Fringed myotis M033 Western red bat M037 Townsend's big-eared bat M038 Pallid bat M045 Brush rabbit M047 Desert cottontail M051 Black-tailed jackrabbit M087 San Joaquin pocket mouse M105 California kangaroo rat M112 American beaver M117 Deer mouse M134 California vole M146 Coyote M147 Red fox M149 Gray fox M151 Black bear M152 Ringtail M153 Raccoon M157 Long-tailed weasel M160 American badger M161 Western spotted skunk M162 Striped skunk

				7				
				7				
				7				
								14
1				7				
				7				
						11		
						11		
				7			12	
				7		11	12	
				7		11	12	
1	3							14
								14
				7				14 14
						11		
				7		11		
								14
				7				
1	3			7		11		
								14 14
		4					12	14
								14 14
								14
			5					
								14
								14
				7				14
				7				14 14
								14
				7				
								14
								14
								14 14 14
								14

Total Number of Species: 83

Habitats Selected:

M165 Mountain lion M166 Bobcat M176 Wild pig M177 Elk M181 Mule deer

Annual grassland

STATUS KEY:

1 = Federal Endangered

2 = Federal Threatened

3 = California Endangered

4 = Caifornia Threatened

5 = Caifornia Fully Protected

6 = California Protected

7 = California Species of Special Concern

8 = Federally - Proposed Endangered

9 = Federally - Proposed Threatened

10 = Federal Candidate

11 = BLM Sensitive

12 = USFS Sensitive

13 = CDF Sensitive

14 = Harvest

Appendix D

Rarefind (CNDDB) Report Summary

Rarefind (CNDDB) Report Summary (March 2010 Data) Lake County Courthouse 675 Lakeport Boulevard, Lakeport, CA

Listed Element	CM	UL	BM	PG	Qu LA	adrang	co CO	НО	HS	KE	СН	Status ²
Animals	Civi	UL	DIVI	FG	LA	LU	- 00	ПО	ПО	NE.	СП	<u>-</u>
American badger					•							SSC
Calasellus californicus										•		None
Bell's sage sparrow									•			None
Blennosperma vernal pool												
andrenid bee					•							None
Clear Lake hitch		•			•	•	•		•		•	SSC
Double-crested cormorant					•							None
Foothill yellow-legged frog				•					•	•		SSC
Grasshopper sparrow				•				•				SSC
Great blue heron					•							None
Osprey			•	•	•	•	•			•		None
Pacific fisher				•								FC, SSC
Sacramento perch					•	•	•				•	SSC
Silver-haired bat			•			•						None
Townsend's big-eared bat				•								SSC
Tricolored blackbird		•			•							SSC
Western pond turtle		•						•	•	•		SSC
Plants												
Anthony's Peak Iupine			•									1B.3
Beaked tracyina				•	•			•				1B.2
Bent-flowered fiddleneck					•	•			•			1B.2
Boggs Lake hedge-hyssop										•		SE, 1B.2
Bolander's horkelia				•					•			1B.2
Brandegee's eriastrum										•		1B.2
Bristly sedge	•							•				2.1
Burke's goldfields										•		FE, SE, 1B.1
Colusa layia					•	•	•	•	•	•		1B.2
Dimorphic snapdragon									•			4.3
Eel-grass pondweed						•	•			•	•	2.2
Glandular western flax			•		•	•			•	•		1B.2
Green jewel-flower					•							1B.2
Koch's cord moss				•				•				1B.3
Konocti manzanita						•			•	•		1B.3
Mayacamas popcorn- flower					•							1A
Napa bluecurls										•		1B.2
Norris' beard moss			•		•	•			•			2.2
Oval-leaved viburnum								•				2.3
Raiche's manzanita				•								1B.1
Rincon Ridge ceanothus				•								1B.1
Robust monardella										•		1B.2
Serpentine cryptantha					•				•			1B.1
Small-flowered												
calycadenia									•			1B.2
Small groundcone				•				•				2.3
Sonoma canescent				•								1B.2

Rarefind (CNDDB) Report Summary (March 2010 Data) Lake County Courthouse

675 Lakeport Boulevard, Lakeport, CA

Listed Element			•		Qu	adrang	gle ¹					Status ²
Listed Element	CM	UL	BM	PG	LA	LU	CO	НО	HS	KE	CH	Status
manzanita												
Two-carpellate western flax			•			•						1B.2
Woolly meadowfoam										•		4.2
Natural Communities												
Clear Lake Drainage Cyprinid /Catostomid Stream						•				•		None
Clear Lake Drainage Resident Trout Stream										•		None
Clear Lake Drainage Seasonal Lakefish Spawning Stream						•				•		None
Coastal and Valley Freshwater Marsh		•			•	•						None
Northern Interior Cypress Forest				•								None
Serpentine Bunchgrass				•								None

Highlighting denotes the quadrangle in which the project site is located.

¹Quadrangle Code

CM = Cow Mountain LA = Lakeport HS = Highland Springs UL = Upper Lake LU = Lucerne KE = Kelseville

BM = Bartlet Mtn. CO = Clearlake Oaks CH = Clearlake Highlands

PG = Purdy's Garden HO = Hopland

²Status Codes

Federal/State

FE = Federally Listed – Endangered FD = Federally Delisted SSC = State Species of Concern

FT = Federally Listed – Threatened SE = State Listed – Endangered FC = Federal Candidate Species ST = State Listed – Threatened

California Native Plant Society

List 1A = Plants Presumed Extinct in California

List 1B = Plants Rare, Threatened or Endangered in California and Elsewhere

List 2 = Plants Rare, Threatened, or Endangered in California, But More Common Elsewhere

List 3 = Plants About Which We Need More Information - A Review List

List 4 = Plants of Limited Distribution - A Watch List

Threat Ranks

0.1 = Seriously Threatened in California

0.2 = Fairly Threatened in California

0.3 = Not Very Threatened in California

A	p	p	e	n	d	İΧ	E
	_	_	_				

Evaluation of the Potential for Special-Status Species or Other Species Identified by the CNDDB to Occur at the Project Site

the CNDDB to Occur on the Site	
 Species Identified by 	
ecies or Other	
Special-Status Sp	
aluation of the Potential for	
Щ	

	Habitat Requirements	Potential to Occur
Wildlife		
American badger <i>Taxidea taxus</i>	Badgers are most commonly found in dry, open areas in shrub, forest, and herbaceous habitats, with friable soils. Badgers dig burrows in dry, sandy soil, usually in areas with sparse overstory.	Review of CNDDB records found that the American badger has been broadly mapped to include the project site. The exact location of this occurrence is uncertain, but has been mapped to include most of the community of Lakeport. Field inspection found no badgers or badger dens. The American badger is thus not expected to be present or affected by project implementation.
Calasellus californicus	Calasellus californicus, a freshwater isopod, is found in association with springs and seeps. The species is known to occur in Lake, Santa Clara, and Napa counties.	Springs and seeps do not occur on the project site. Calasellus californicus would thus not be present or affected by project implementation.
Bell's sage sparrow Amphispiza belli belli	Bell's sage sparrow nest in chaparral dominated by dense stands of chamise.	The project area does not support chaparral or dense stands of chamise. Bell's sage sparrow would thus not be present.
Blennosperma vernal pool andrenid bee Andrena blennospermatis	The blennosperma vernal pool andrenid bee is a solitary, ground-nesting bee that inhabits upland areas around vernal pools. This bee has a patchy distribution in California's Sacramento Valley and foothills.	Vernal pools do not occur on or adjacent to the project site. The blennosperma vernal pool andrendid bee would thus not be present or affected by project implementation.
Clear Lake hitch Lavinia exilicauda chi	Clear Lake hitch are endemic to Clear Lake (Lake County) and its associated tributaries. Hitch are also found in nearby Thurston Lake and Lampson Pond. Adults spawn in seasonal tributary streams to Clear Lake, such as Kelsey, Seigler Canyon, Adobe, Middle, Scotts, Cole, and Manning creeks. Spawning occurs in gravelly areas in the lower reaches of these streams.	The project area lacks lakes and streams. Clear Lake hitch would thus not be present or affected by project implementation.
Double-crested cormorant Phalacrocorax auritis	Double-crested cormorant is a year-long resident along the coast and inland lakes and rivers, and feeds primarily on fish. Double-crested cormorants are colonial nesters, and nest from April through August. Nesting/roosting habitat includes offshore rocks, islands, cliffs, wharfs, jetties, or overhanging tree branches along lakes and rivers.	The project area lacks suitable nesting and foraging habitat for the double-crested cormorant. The double-crested cormorant would thus not be present or affected by project implementation.

Page 1 of 8 500-01 Lake County Courthouse BSR

ow water.	
tation in shal	
aquatic veget	
	aquatic vegetation in shallow water.

Evaluation of the Potential for Speci	r Special-Status Species or Other Species Identified by the CNDDB to Occur on the Habitat Requirements	ine CNDDB to Occur on the Site Potential to Occur
Foothill yellow-legged frog Rana boylii	Foothill yellow-legged frogs are typically found in partly-shaded, shallow streams and riffles with a rocky substrate in a variety of aquatic habitats. This frog needs at least some cobble-sized substrate for egg-laying. Foothill yellow-legged frogs generally prefer low to moderate gradient streams, especially for breeding and egg-laying, although juvenile and adult frogs may utilize moderate- to steep-gradient streams during summer and early fall.	The project area lacks suitable habitat for the foothill yellow-legged frog. The foothill yellow-legged frog was not observed during the wildlife survey and is not expected to be present or affected by project implementation.
Grasshopper sparrow Ammodramus savannarum	Grasshopper sparrows frequent dry or well-drained native grasslands. Nesting occurs from early April through mid-July in these grasslands. Nests are constructed of grasses or forbs in slight depressions on the ground, usually at the base of an overhanging clump of grass or forbs.	Although not observed during the wildlife survey, the grassland on the project site has a low potential to provide nesting habitat for the grasshopper sparrow.
Great blue heron Ardea herodias	Great blue herons nest in colonies along marshes, lake margins, tideflats, wet meadows, rivers, and streams. Nests are generally in the tops of tall trees and snags. Uncommon nest sites include rock ledges, sea cliffs, and tule mats.	The project site lacks suitable nesting habitat for the great blue heron. Great blue herons were not observed during the wildlife survey and are not expected to nest on the site.
Osprey Pandion haliaetus	Ospreys require large bodies of permanent water and suitable nest sites. Nesting occurs on large decadent trees or structures such as powerline towers, buildings, and bridges. Ospreys are primarily associated with pine and mixed-conifer habitats, although urban or suburban nests are not unusual.	The project site lacks suitable nesting habitat for the osprey. Ospreys were not observed during the wildlife survey and are not expected to nest on the site. Review of CNDDB records found that the nearest reported osprey nest is approximately ¼-mile southeast of the project site, along the shore of Clear Lake.
Pacific fisher Martes pennanti pacificus	Pacific fishers primarily inhabit mixed conifer forests dominated by Douglas-fir, although they also are encountered frequently in higher elevation fir and pine forests, and mixed evergreen/broadleaf forests. Suitable habitat for Pacific fishers consists of large areas of mature, dense forest stands with snags and greater than 50 percent canopy closure.	No forest habitat occurs on the project site. Field inspection found no fishers or fisher dens on the site. The Pacific fisher would thus not den on the site or be affected by project implementation.
Sacramento perch Archoplites interruptus	The Sacramento perch is a warm-water fish that historically occurred in Clear Lake (Lake County), as well as the Sacramento, San Joaquin, Pajaro, and Salinas river systems. The species is presently restricted to Clear Lake and several small reservoirs and farm ponds where they have been introduced. Adults and juveniles associate with beds of aquatic vegetation in shallow water.	Lakes and streams do not occur on the project site. The Sacramento perch would thus not be present or affected by project implementation.

Page 2 of 8 500-01 Lake County Courthouse BSR

Evaluation of the Potential fo	Evaluation of the Potential for Special-Status Species or Other Species Identified by the CNDDB to Occur on the Site	he CNDDB to Occur on the Site
	Habitat Requirements	Potential to Occur
Silver-haired bat Lasionycteris noctivagans	Silver-haired bats occur in coastal and montane forests. Silver-haired bats roost in hollow trees, snags, rock crevices, caves, and under bark.	The project site provides suitable foraging habitat for the silver-haired bat, but does not provide roosting habitat.
Townsend's big-eared bat Corynorhinus townsendii pallescens	Townsend's big-eared bat is found throughout California except in subalpine and alpine habitats, and may be found at any season throughout its range. The species is most abundant in mesic habitats. The bat requires caves, mines, tunnels, buildings, or other human-made structures for roosting.	The project site provides suitable foraging habitat for Townsend's bigeared bat, but does not provide roosting habitat.
Tricolored blackbird Agelaius tricolor	Tricolored blackbirds require open water, usually nesting in dense cattails or tules although they can also nest in thickets of willow, blackberry, wild rose and tall herbs. Tricolored blackbirds are colonial nesters. Nesting areas must be large enough to support a minimum colony of about 50 pairs.	The project site lacks suitable nesting habitat for the tricolored blackbird. Tricolored blackbirds were not observed during the wildlife survey and are not expected to nest on the site.
Western pond turtle Actinemys marmorata	The western pond turtle associates with permanent or nearly permanent water in a variety of habitats. This turtle is typically found in quiet water environments. Pond turtles require basking sites such as partially submerged logs, rocks, or open mud banks, and suitable (sandy banks or grassy open fields) upland habitat for egg-laying. In cold weather, pond turtles hibernate underwater in bottom mud.	The project site lacks suitable habitat for the western pond turtle. The western pond turtle was not observed during the wildlife survey and is not expected to be present or affected by project implementation.
PLANTS		
Anthony's Peak lupine Lupinus antoninus	Anthony's Peak lupine occurs on rocky outcrops and dry talus and shaley slopes on mountaintops above timberline (4,000 to 7,500 feet above sea level). The species is known to occur in Mendocino, Trinity, and Lake counties. The flowering period is May through July.	The project site is well below the elevational range of Anthony's Peak lupine. The species was not observed during the botanical survey and is not expected to be present or affected by project implementation.

Page 3 of 8 500-01 Lake County Courthouse BSR

Evaluation of the Potential for	Evaluation of the Potential for Special-Status Species or Other Species Identified by the CNDDB to Occur on the	the CNDDB to Occur on the Site
	Habitat Requirements	Potential to Occur
Beaked tracyina <i>Tracyina rostrata</i>	Beaked tracyina is an annual herb that usually occurs on dry, grassy slopes in coastal prairie. The species is reported between 400 and 1,000 feet in elevation. Most populations are reported in Humboldt and Mendocino counties, although several populations are found in Lake and Sonoma counties. The flowering period is May through June.	The disturbed grassland on the project site has a low potential to support beaked tracyina. However, beaked tracyina was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Bent-flowered fiddleneck Amsinckia lunaris	Bent-flowered fiddleneck occurs in cismontane woodland, and valley and foothill grassland. The species is reported between 50 and 1,500 feet in elevation. Populations are known to occur in Lake, Marin, Napa, Colusa, Contra Costa, Alameda, San Benito, Santa Clara, Santa Cruz, Yolo, and San Mateo counties. The flowering period is March through June.	The project site provides suitable habitat for bent-flowered fiddleneck, and the species was observed during the botanical survey.
Boggs Lake hedge-hyssop <i>Gratiola heterosepala</i>	Boggs Lake hedge-hyssop occurs in marshes, swamps, and vernal pools. The species is reported from sea level to 7,800 feet in elevation. The flowering period is April through August.	The project site lacks marshes, swamps, and vernal pools. Boggs Lake hedge-hyssop was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Bolander's horkelia Horkelia bolanderi	Bolander's horkelia occurs along grassy margins of vernal pools. The species is reported between 1,500 and 3,000 feet in elevation. Populations are known to occur in Colusa, Lake, and Mendocino counties. The flowering period is June through August.	Vernal pools do not occur on the project site. Bolander's horkelia was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Brandegee's eriastrum <i>Eriastrum brandegeae</i>	Brandegee's eriastrum occurs on dry gravelly to loamy soils on flats and benches in chaparral or closed-cone pine forests. The species is reported between 1,000 and 3,400 feet in elevation in the northern Coast Range. Populations are known to occur in Colusa, Glenn, Lake, Shasta (extreme southwestern portion), Trinity, Santa Clara, and San Mateo counties. The flowering period is April through August.	Chaparral or closed-cone pine forests do not occur on the project site. Brandegee's eriastrum was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Bristly sedge Carex comosa	Bristly sedge occurs in marshes, and swamps, or along lake margins. This species is reported from sea level to 2,100 feet in elevation. The flowering period is May through September.	Marshes, swamps, or lake margins do not occur on the project site. Bristly sedge was not observed during the botanical survey and is not expected to be present or affected by project implementation.

Page 4 of 8 500-01 Lake County Courthouse BSR

Evaluation of the Potential for Speci	al-Status S _l	the CNDDB to Occur on the Site
Burke's goldfields Lasthenia burkei	Burke's goldfields occurs in vernal pools, meadows, and seeps. The species is reported between 50 and 2,000 feet in elevation. Populations are known to occur in Lake, Mendocino, Napa, and Sonoma counties. The flowering period is April through June.	Vernal pools, meadows, and seeps do not occur on the project site. Burke's goldfields was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Colusa layia Layia septentrionalis	Colusa layia is an annual herb that occurs in oak woodland, chaparral, valley and foothill grasslands, and in sandy serpentinite. The species is reported between 300 and 3,600 feet in elevation. Populations are known to occur in the Coast Range and Sutter Buttes (Colusa, Glenn, Lake, Mendocino, Napa, Sonoma, Sutter, Tehama, and Yolo counties). The flowering period is April through May.	The project site provides suitable habitat for Colusa layia, and the species was observed on the northern portion of the upper terrace and on the slope below the terrace.
Dimorphic snapdragon Antirrhinum subcordatum	Dimorphic snapdragon occurs on serpentine or shale soils in foothill woodland or chaparral on south or west-facing slopes, between 600 and 2,500 feet above sea level. The flowering period is April through July.	Serpentine rocks cover most of the project site. However, dimorphic snapdragon was not observed during the botanical survey and is not expected to be present.
Eel grass pondweed Potamogefon zosteriformis	Eel grass pondweed occurs in ponds, lakes, streams, marshes, and swamps up to 6,000 feet in elevation. This aquatic plant has been reported in Lassen, Shasta, Modoc, Contra Costa, and Lake counties.	Suitable habitat for eel grass pondweed does not occur on the project site. Eel grass pondweed was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Glandular western flax Hesperolinon adenophyllum	Glandular western flax generally occurs on serpentine soils in chaparral. The species is reported between 1,400 and 4,300 feet in elevation. Populations are known to occur in Lake and Mendocino counties. The flowering period is May through August.	Serpentine rocks cover most of the project site. However, glandular western flax was not observed during the botanical survey and is not expected to be present.
Green jewel-flower Streptanthus breweri var. hesperidis	Green jewel-flower occurs in openings in chaprarral and cismontane woodland, or on serpentine or rocky sites. The species is reported between 400 and 2,500 feet in elevation. Populations are known to occur in Glenn, Lake, Napa, and Sonoma counties. The flowering period is May through July.	Review of CNDDB records found that the green jewel-flower has been broadly mapped to include the project site. The exact location of this occurrence is uncertain, but has been mapped to include most of the community of Lakeport. Serpentine rocks cover most of the project site. However, green jewel-flower was not observed during the botanical survey and is not expected to be present or affected by project implementation.
500-01 Lake County Courthouse BSR		Page 5 of 8

Evaluation of the Potential for Speci	Special-Status Species or Other Species Identified by the CNDDB to Occur on the Site	the CNDDB to Occur on the Site
	Habitat Requirements	Potential to Occur
Koch's cord moss Entosthodon kochii	Koch's cord moss occurs on moist soils in cismontane woodland. The species is reported between 1,600 and 3,300 feet in elevation. Populations are known to occur in San Luis Obispo, Mariposa, Marin, and Mendocino counties.	The project site lacks cismontane woodland and is slightly below the reported elevation range for Koch's cord moss. Koch's cord moss is not expected to be present or affected by project implementation.
Konocti manzanita Arctostaphylos manzanita ssp. elegans	Konocti manzanita occurs on volcanic soils in chaparral, cismontane woodland, and lower montane coniferous forest. The species is reported between 1,300 and 4,600 feet in elevation. Populations are known to occur in Colusa, Glenn, Tehama, Lake, Napa, and Sonoma counties. The flowering period is March through May.	The project site is nearly devoid of trees and shrubs, and lacks suitable habitat for Konocti manzanita. Konocti manzanita was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Mayacamas popcorn-flower Plagiobothrys lithocaryus	Mayacamas popcorn-flower occurs on moist sites in cismontane woodland, and valley and foothill grasslands. The species is reported between 900 and 1,500 feet in elevation. Populations are known to occur in Mendocino and Lake counties. The flowering period is April through May.	Review of CNDDB records found that the Mayacamas popcorn-flower has been broadly mapped to include the project site. The exact location of this occurrence is uncertain, but has been mapped to include most of the community of Lakeport. The onsite grassland provides marginally suitable habitat for Mayacamas popcorn-flower. The species was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Napa bluecurls Trichostema ruygtii	Napa bluecurls occurs in vernal pools in valley and foothill grasslands, and in openings in chaparral, cismontane woodland, and lower montane coniferous forest. The species is reported between 100 and 2,000 feet in elevation. Populations are known to occur in Napa and Solano counties. The flowering period is June through October.	The project site lacks vernal pools, chaparral, and cismontane woodland. Napa bluecurls was not observed during the botanical survey and is not expected to be present or affected by project implementation.

Page 6 of 8 500-01 Lake County Courthouse BSR

The project site is well below the elevational range of Norris' beard moss. The species would thus not be present.

Norris' beard moss occurs on rocks in cismontane woodland and lower montane coniferous forest. The species is reported to occur between 2,000 and 6,500 feet in elevation.

Norris' beard moss Didymodon norrisii

Evaluation of the Potential for	Evaluation of the Potential for Special-Status Species or Other Species Identified by the CNDDB to Occur on the Site	the CNDDB to Occur on the Site
	Habitat Requirements	Potential to Occur
Oval-leaved viburnum Viburnum ellipticum	Oval-leaved viburnum inhabits chaparral, cismontane woodland, and lower montane coniferous forests. The species often occurs on north-facing slopes covered by dense brush. Oval-leaved viburnum is found between 700 and 4,600 feet in elevation. The flowering period is May through June.	The project site lacks chaparral, cismontane woodland, and montane coniferous forest. Oval-leaved viburnum was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Raiche's manzanita Arctostaphylos stanfordiana ssp. raichei	Raiche's manzanita occurs on serpentine soils in chaparral and lower montane coniferous forest. The species is reported between 1,500 and 3,300 feet in elevation. Populations are known to occur in Mendocino County. The flowering period is February through April.	The project site is nearly devoid of trees and shrubs, and lacks suitable habitat for Raiche's manzanita. Raiche's manzanita was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Rincon Ridge ceanothus Ceanothus confusus	Rincon Ridge ceanothus occurs on dry, serpentine or volcanic soils in chaparral, cismontane woodland, and lower montane coniferous forests. The species is reported between 250 and 3,500 feet in elevation. Populations are known to occur in Lake, Mendocino, Napa, and Sonoma counties. The flowering period is February through June.	The project site is nearly devoid of trees and shrubs, and lacks suitable habitat for Rincon Ridge ceanothus. Rincon Ridge ceanothus was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Robust monardella Monardella villosa ssp. globosa	Robust monardella occurs in openings in chaparral and oak woodlands. The species is reported from sea level to 4,300 feet in elevation. Populations are known to occur in Alameda, Contra Costa, Humboldt, Lake, Mendocino, Napa, Santa Clara, Santa Cruz, San Mateo, and Sonoma counties. The flowering period is June through July.	The project site is nearly barren of trees and shrubs. Robust monardella was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Serpentine cryptantha Cryptantha clevelandii var. dissita	Serpentine cryptantha occurs on serpentine rock outcrops in chaparral. The species is reported between 1,100 and 2,400 feet in elevation. Populations are known to occur in Lake, Mendocino, Napa, and Sonoma counties. The flowering period is April through June.	Serpentine cryptantha was observed on the project site.
Small-flowered calycadenia Calycadenia micrantha	Small-flowered calycadenia generally occurs on rocky talus or in sparsely vegetated areas, but is occasionally found on serpentine soils and roadsides. The species is reported from sea level to 5,000 feet in elevation. Populations are known to occur in Monterey, Trinity, Lake, Napa, and Colusa counties. The flowering period is June through September.	The project site has a moderate potential to support small-flowered calycadenia. However, small-flowered calycadenia was not observed during the botanical survey and is not expected to be present or affected by project implementation.

Page 7 of 8 500-01 Lake County Courthouse BSR

Evaluation of the Potential for	Evaluation of the Potential for Special-Status Species or Other Species Identified by the CNDDB to Occur on the Site	the CNDDB to Occur on the Site
	Habitat Requirements	Potential to Occur
Small groundcone Boschniakia hookeri	Small groundcone occurs in North Coast coniferous forests, and is often found in association with salal. The species is reported between 300 and 2,900 feet in elevation. Populations are known to occur in Del Norte, Humboldt, Mendocino, Marin, and Trinity counties. The flowering period is April through August.	The project site is nearly devoid of trees and shrubs, and does not have suitable habitat for small groundcone. Small groundcone was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Sonoma canescent manzanita Arctostaphylos canescens ssp. sonomensis	Sonoma canescent manzanita generally occurs in openings in chaparral. The species is most often found on dry, rocky ridges and slopes of serpentine origin. In the southern portion of its range, the species is found on volcanic soils. Sonoma canscent manzanita is reported between 650 and 4,900 feet in elevation. Populations are known to occur in Humboldt, Trinity, Mendocino, Lake, Colusa, Tehama, and Sonoma counties. The flowering period is January through June.	The project site is nearly devoid of trees and shrubs, and lacks suitable habitat for Sonoma canescent manzanita. Sonoma canescent manzanita was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Two-carpellate western flax Hesperolinon bicarpellatum	Two-carpellate western flax occurs in serpentine barrens at the edge of chaparral. The species is reported between 500 and 2,700 feet in elevation. Populations are known to occur in Lake, Napa, and Sonoma counties. The flowering period is May through July.	Serpentine rocks cover most of the project site. However, two-carpellate western flax was not observed during the botanical survey and is not expected to be present or affected by project implementation.
Woolly meadowfoam Limnanthes floccosa ssp. floccosa	Woolly meadowfoam generally occurs in vernal pools, ditches, and ponds in valley foothill and grasslands, cismontane woodland, and chaparral. The species is reported between 200 and 3,600 feet in elevation. The flowering period is March through June.	A ditch in the southeast portion of the project site has marginally suitable habitat for woolly meadowfoam. However, woolly meadowfoam was not observed during the botanical survey and is not expected to be present or affected by project implementation.

Page 8 of 8 500-01 Lake County Courthouse BSR

Appendix F

Checklist of Vascular Plant Species Observed

Lake County Courthouse Site April 9 and 29, May 17, and June 19, 2010

Amaranthaceae

Amaranthus albus

Apiaceae

Lomatium macrocarpum Perideridia sp. Torilis arvensis

Asteraceae

Achyrachaena mollis Agoseris grandiflora Agoseris heterophylla Ancistrocarphus filagineus Anthemis cotula Baccharis pilularis

Calycadenia pauciflora Carduus pycnocephalus Centaurea solstitialis

Chamomilla suaveolens Cirsium cymosum Filago gallica

Hemizonia congesta ssp. clevelandii

 $Hypochaeris\ glabra$

Lactuca sp.

Lagophylla ramosissima var. ramosissima

Lasthenia californica Layia septentrionalis

Micropus californicus var. californicus Microseris douglasii ssp. douglasii Psilocarphus tenellus var. tenellus

 $Rigio pappus\ lepto cladus$

 $Senecio\ vulgaris$

Sonchus asper ssp. asper Uropappus lindleyi

Boraginaceae

Amsinckia lunaris Amsinckia menziesii var. menziesii Cryptantha clevelandii var. dissita Plagiobothrys nothofulvus

Brassicaceae

Athysanus pusillus Brassica rapa Capsella bursa-pastoris

Lepidium sp.

Lepidium nitidum var. nitidum

Streptanthus barbiger Thysanocarpus curvipes

Amaranth Family

Tumbleweed

Carrot Family

Large-fruited lomatium Yampah Field hedge-parsley

Sunflower Family

Blow-wives

Large-flowered agoseris

Annual agoseris

Wooly fishhooks/false neststraw

Stinking chamomile

Coyote-brush

Smallflower western rosinweed

Smalllower western
Italian thistle
Yellow star thistle
Pineapple weed
Peregrine thistle
Narrow-leaved filago
Hayfield tarweed
Smooth cat's ear
Prickly lettuce

Common hareleaf California goldfields Colusa tidytips Slender cottonweed

Douglas' silverpuffs Slender woolly marbles

Rigiopappus

Old-man-in-the-Spring Prickly sow thistle

Silverpuffs

Borage Family

Bent-flowered fiddleneck Menzies' fiddleneck Cleveland's cryptantha Rusty popcorn-flower

Mustard Family

Petty athysanus Field-mustard Shepherd's purse Peppergrass Shining peppergrass Bearded jewelflower

Lace pod

Lake County Courthouse Site

Campanulaceae

Githopsis specularioides

Caryophyllaceae

Cerastium glomeratum Minuartia douglasii Petrorhagia dubia

 $Scleranthus\ annuus\ {
m ssp.}\ annuus$

Spergularia rubra

Convolvulaceae

Convolvulus arvensis

Crassulaceae

Crassula tillaea

Cucurbitaceae

Marah sp.

Cuscutaceae

Cuscuta californica

Euphorbiaceae

 $Eremocarpus\ setigerus$

Fabaceae

Astragalus gambelianus

Lotus sp.

Lotus denticulatus Lotus humistratus Lotus purshianus Lupinus bicolor Medicago minima Medicago polymorpha Medicago praecox

Trifolium albopurpureum var. dichotomum

Trifolium bifidum var. decipiens

Trifolium dubium Trifolium hirtum Trifolium willdenovii Vicia sativa ssp. nigra Vicia villosa ssp. villosa

Fagaceae

Quercus lobata

Gentianaceae

Centaurium muehlenbergii

Bluebell Family

Common bluecup

Pink Family

Mouse-eared chickweed Douglas' sandwort Grass pink German knotgrass

Ruby sand spurry

Morning Glory Family

Bindweed

Stonecrop Family

Moss pygmy weed

Gourd Family

Man-root

Dodder Family

Chaparral dodder

Spurge Family

Dove weed

Legume Family

Gambel's dwarf milkvetch

Lotus

Riverbar birds-foot trefoil

Hairy lotus
Spanish lotus
Bicolored lupine
Hairy bur-clover
California bur-clover
Mediterranean bur-clover
Branched Indian clover

Deceptive clover
Little hop clover
Rose clover
Tomcat clover
Garden vetch
Winter vetch

Oak Family

Valley oak (seedling)

Gentian Family

Muhlenberg's centaury

Lake County Courthouse Site

Geraniaceae

Erodium botrys Erodium brachycarpum Erodium cicutarium

Hydrophyllaceae

Phacelia corymbosa

Iridaceae

Sisyrinchium bellum

Juncaceae

Juncus bufonius

Liliaceae

Allium falcifolium

Brodiaea californica var. californica

Calochortus vestae Chlorogalum sp.

Dichelostemma capitatum ssp. capitatum

Malvaceae

Sidalcea diploscypha

Onagraceae

Camissonia graciliflora Clarkia gracilis ssp. gracilis Clarkia gracilis ssp. tracyi Clarkia purpurea ssp. quadrivulnera

Epilobium minutum

Orobanchaceae

Orobanche fasciculata

Papaveraceae

Eschscholzia californica Platystemon califonicus

Plantaginaceae

Plantago sp.
Plantago erecta

Poaceae

Aegilops triuncialis Aira caryophyllea Avena barbata Avena fatua

Bromus carinatus var. carinatus

Bromus diandrus Bromus hordeaceus

Bromus madritensis ssp. rubens Deschampsia danthonioides Geranium Family

Long-beaked filaree Short-fruited storksbill Red-stemmed filaree

Waterleaf Family

Serpentine phacelia

Iris Family

Blue-eyed grass

Rush Family

Toad rush

Lily Family

Scytheleaf onion California brodiaea Coast Range mariposa lily Soap plant

Blue dicks

Mallow Family

Fringed checkerbloom

Evening-Primrose Family

Hill suncup Slender clarkia Tracy's clarkia Winecup clarkia Chaparral willowherb

Broom-rape Family

Clustered broom-rape

Poppy Family

California poppy Creamcups

Plantain Family

Plantain Hooker's plantain

Grass Family

Barbed goatgrass Silver hairgrass Slender wild oats Wild oats California brome Ripgut grass Soft chess Red brome Annual hairgrass

Lake County Courthouse Site

Elymus multisetus

Hordeum brachyantherum ssp. californicum

Hordeum marinum ssp. gussoneanum

Hordeum murinum Lolium multiflorum Melica californica Nasella pulchra

Poa annua Poa secunda ssp. secunda

Scribneria bolanderi

Secale cereale

Taeniatherum caput-medusae Vulpia microstachys var. ciliata Vulpia microstachys var. microstachys Vulpia microstachys var. pauciflora

Vulpia myuros var. myuros

Polemoniaceae

Gilia capitata ssp. capita

Gilia tricolor

Leptosiphon bolanderi Linanthus bicolor

Polygonaceae

Eriogonum nudum Eriogonum vimineum Rumex crispus

Portulacaceae

Calandrinia ciliata Claytonia exigua ssp. exigua Claytonia perfoliata

Primulaceae

Anagallis arvensis

Pteridaceae

Pentagramma triangularis ssp. triangularis

Ranunculaceae

Delphinium hansenii ssp. hansenii Ranunculus sp.

Rosaceae

Crataegus sp.

Rubiaceae

Galium aparine Galium parisiense Big squirreltail California barley Mediterranean barley

Foxtail barley
Annual ryegrass
California melic
Purple needlegrass
Annual bluegrass
One-sided bluegrass
Scribner grass

Rye

Medusa head
Fringed fescue
Small fescue
Few-flowered fescue
Rattail fescue

Phlox Family

Globe gilia Bird's eyes

Bolander's linanthus Bicolored linanthus

Buckwheat Family

Naked buckwheat Wicker buckwheat Curly dock

Purslane Family

Red maids Little miner's-lettuce Common miner's lettuce

Primrose Family

Scarlet pimpernel

Brake Family

Goldback fern

Buttercup Family

Eldorado larkspur Buttercup

Rose Family

Hawthorn (horticultural)

Madder Family

Cleavers Wall bedstraw

Lake County Courthouse Site

Scrophulariaceae

Castilleja attenuata Castilleja exserta ssp. exserta Castilleja rubicundala ssp. lithospermoides Collinsia sparsiflora var. sparsiflora Mimulus guttatus Triphysaria eriantha Verbascum blattaria

Taxodiaceae

Sequoia sempervirens

Valerianaceae

Plectritis macrocera

Snapdragon Family

Valley tassels
Exserted Indian paintbrush
Cream sacs
Spinster's blue eyed Mary
Common monkey-flower
Johnny tuck
Moth mullein

Bald Cypress Family

Redwood (horticultural)

Valerian Family

White plectritis

Appendix G

Checklist of Wildlife Species Observed

Checklist of Wildlife Species Observed Lake County Courthouse 675 Lakeport Boulevard, Lakeport, CA

Common Name	Scientific Name	Status	
BIRDS			
American crow	Corvus brachyrhynchos	None	
Black-tailed jackrabbit	Lepus californicus	None	
California gull	Larus californicus	None	
Common raven	Corvus corax	None	
Killdeer	Charadrius vociferus	None	
Red-tailed hawk	Buteo jamaicensis	None	
Western scrub-jay	Aphelocoma californica	None	
MAMMALS			
California ground squirrel	Otospermophilus beecheyi	None	
Gopher	Thomomys sp.	None	
REPTILES			
Western fence lizard	Sceloperus occidentalis	None	

Lake County Courthouse Site Pre-jurisdictional Delineation Report

Applicant/Land Owner:

Administrative Office of the Courts 2860 Gateway Oaks Drive, Suite 400 Sacramento, CA 95833 Attention: Laura Sainz

Access:

From Lakeport, take Highway 29 to the Lakeport Boulevard exit. Travel east on Lakeport Boulevard approximately 1000 feet. The site is on the south side of Lakeport Boulevard and can be accessed from the road margin.

I. INTRODUCTION

The ±6.4-acre study site is located east of the intersection of Lakeport Boulevard and Highway 29 in the City of Lakeport, Lake County. The study site encompasses the subject ±5.8-acre parcel as well as the southern fill slope along Lakeport Boulevard to the north. As shown in Figure 1, the site is situated near the center of Section 25, Township 14 North, Range 10 West (Lakeport, CA, 7.5-minute quadrangle). The site is identified as Lake County Assessor's Parcel Number 025-521-410 and is being evaluated for potential construction of a new Lake County courthouse.

The site elevation ranges between 1,340 and 1,400 feet above sea level. The site was historically an oak woodland, and was used for agriculture and grazing beginning in the late 1930s; the site was cleared of trees and shrubs in the early 1970s, and was graded prior to 1988 (URS, 2009). Grading dramatically altered the natural contours of the site. Roughly 20 feet of surface material was removed from the upper portion of the site, resulting in two level terraces.

Small rocks of serpentine origin are exposed on the upper terrace and hillsides, which support a serpentine herb community. The serpentine herb community generally consists of a sparse, low-growing cover of annual and perennial forbs and grasses including naked buckwheat, wicker buckwheat, reflexed fescue, serpentine phacelia, fringed checkerbloom, bearded jewelflower, Douglas's sandwort, and Gambel's dwarf milkvetch. The lower terrace, on the eastern edge of the study area, supports an annual grassland community. Common species in this community include wild oats, soft chess, California meadow barley, cream sacs, winter vetch, Spanish lotus, and various clovers. All of the above species have an indicator status of FACU or drier.

According to the U.S. Department of Agriculture, Natural Resources

Conservation Service (NRCS, 2010), two soil units are present on the study site.

Henneke-Montara-rock outcrop complex, 15-30 percent slopes, covers nearly the entirety of the study site. A very small amount of Still loam, stratified substratum, is mapped as occurring in the extreme northeast corner of the site. The Henneke-Montara-rock outcrop complex is not considered hydric, while the Still soil unit is partly hydric, i.e., it may contain inclusions of hydric soils. It should be noted that past grading activities on the site have resulted in removal and/or redistribution of most of the on-site soils.

The climate of the project vicinity is of the Mediterranean type, with cool, moist winters and hot, dry summers. Annual precipitation averages ±28.4 inches in the community of Lakeport, which reasonably approximates conditions on the subject site (Western Regional Climate Center, 2010).

II. METHODOLOGY

Prior to undertaking the field studies, National Wetlands Inventory maps (U.S. Fish and Wildlife Service, n.d.) were reviewed to determine if any jurisdictional waters had been previously reported on or within one-half mile of the project site. Such data is not available for the Lakeport quadrangle.

The primary field investigation was conducted on April 29 and 30, 2010. During the field investigation, field conditions were relatively wet. Average April rainfall for the City of Lakeport measures 2.19 inches; actual rainfall totals for April 2010 measured 6.89 inches (NOAA, 2010).

The wetland investigation was conducted in accordance with technical methods outlined in the Corps of Engineers Wetlands Delineation Manual (U.S. Department of the Army, Corps of Engineers, 1987) and under the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (U.S. Department of the Army, Corps of Engineers, 2008), which is referred to as the "Arid West Supplement" in this report. Wetland Determination Data Forms are presented in Appendix A of this report.

Although no wetlands were identified, several non-wetland waters of the United States are present. The limit of the Corps of Engineers' jurisdiction over these features is represented by the ordinary high water mark. As described in the Code of Federal Regulations Title 33: Navigation and Navigable Waters-Sec. 328.3(e), the ordinary high water mark is defined as the line on the shore established by fluctuations of water indicated by physical characteristics. These may include a clear/natural line on the bank, shelving, changes in soil, destruction of terrestrial vegetation, presence of litter and debris, or other appropriate means that consider the characteristics of the surrounding areas. The limits of on-site ditches and seasonal waters were identified in the field using these indicators.

Scientific nomenclature for plants cited in this report is in accordance with the taxonomic treatments presented in *A Synonymized Checklist of the Vascular Flora of the United States, Canada, and Greenland* (Kartesz, 1994). The wetland indicator status of the plants was determined using the *National List of Plant Species That Occur in Wetlands: California (Region 0)* (U.S. Department of the Interior, Fish and Wildlife Service, 1988). Soil colors were identified using *Munsell Soil Color Charts* (Kollmorgen Instruments Corporation, 2000).

Coordinates along the perimeters of non-linear waters were obtained using a global positioning system (GPS) unit capable of sub-meter accuracy. Coordinates for the centerlines of ditches were also recorded with the GPS unit; the aerial extent of the ditches was calculated based on cross-sectional measurements taken at roughly 25-foot intervals. The GPS coordinates were downloaded into ArcMap for mapping and acreage calculations.

III. RESULTS

During the field investigation, ENPLAN mapped eight non-wetland waters of the United States within two categories: seasonal waters and constructed ditches. These features are characterized below. The results of the field delineation effort are summarized in Tables 1 and 2 and shown in Figure 2. Representative photos are presented in Appendix B.

<u>Seasonal Waters</u>: Two seasonal waters, on the western edge of the upper terrace, were created when the site was graded and bedrock was exposed. Water now ponds to a depth of two to three inches in these shallow depressions underlain by bedrock. Representative plant species include scribner grass (*Scribneria bolanderi*, UPL), annual hairgrass (*Deschampsia danthonioides*, FACW), and rigiopappus (*Rigiopappus leptocladus*, UPL), but vegetative cover is less than five percent. As described in the Arid West Supplement, features with an ordinary high water mark and less than five percent vegetative cover are non-wetland waters. The extent of ponding was documented through site inspections on February 8 and April 9, 29 and 30, 2010, as well as by the presence of water-stained rock, sediment deposits, and a biotic crust.

<u>Constructed Ditches</u>: Constructed ditches are excavated features that may be located in either wetlands or uplands, and may convey water collected from sheet flow or diverted from other water bodies. The jurisdictional status of constructed ditches depends in part on these characteristics. The on-site ditches are constructed in uplands, and receive sheet-flow runoff and discharge from the two non-wetland waters on the upper terrace. Most of the ditches have only ephemeral flow. However, 3:CD and 8:CD do not drain well and support wetland plant species in their lower ends; species present include annual ryegrass (*Lolium multiflorum* = *L. perenne*, FAC*), *Hordeum marinum* ssp. *gussoneanum* = *H. hystrix*, FAC), and common monkey-flower (*Mimulus guttatus*, OBL).

Table 1 Summary of Waters by Type

Typo	Area			
Туре	sq. ft.	acres		
Constructed Ditches	2,108	0.048		
Seasonal Waters	3,793	0.087		
Total Waters	5,901	0.135		

Table 2 Waters by Map ID

Мар	Typo	Average	Length	Area	
ID	Туре	Width	Lengin	sq. ft.	acres
1	Constructed Ditch		350	595	0.014
2	2 Constructed Ditch		20	10	0.000
3	Constructed Ditch	4.6 206		948	0.022
4	Seasonal Water	_	_	2,599	0.060
5	Seasonal Water	_	_	1,194	0.027
6	Constructed Ditch	1.6	178	285	0.007
7	Constructed Ditch	1.5	10	15	0.000
8	Constructed Ditch	2.3	111	255	0.006
		T	otal Waters	5,901	0.135

ENPLAN

Feet 0 100

IV. JURISDICTIONAL DETERMINATION

As described in Regulatory Guidance Letter 08-02, the applicant concurs with the Army Corps of Engineers that waters regulated under the Clean Water Act may be present on the site. As such, these waters will be treated as jurisdictional for the purpose of calculating fill and satisfying future mitigation requirements. The applicant understands that they can later request and obtain an approved JD if that later becomes necessary or appropriate during the permit process or during the administrative appeal process.

V. REFERENCES

- Kartesz, J.T. 1994. A Synonymized Checklist of the Vascular Flora of the United States, Canada, and Greenland. 2nd edition. Volume 1 Checklist, Volume 2 Thesaurus. Timber Press, Inc., Portland, Oregon.
- Kollmorgen Instruments Corporation. 2000. Munsell Soil Color Charts.
- URS Corporation. December 2009. Final Draft Phase I Environmental Site Assessment Report: Proposed New Lakeport Courthouse 675 Lakeport Boulevard Site. 675 Lakeport Boulevard, Lakeport CA 95453. Unpublished document on file with the Judicial Council of California, Administrative Office of the Courts.
- U.S. Department of Agriculture, Natural Resources Conservation Service. 2009. Web Soil Survey, August 31, 2009 Map Data. http://websoilsurvey.nrcs.usda.gov/app/.>
- U.S. Department of the Army, Corps of Engineers. 1987. *Corps of Engineers Wetlands Delineation Manual*. Technical Report Y-87-1. National Technical Information Service, Springfield Virginia.
- _____. 2008. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0), eds. J.S. Wakeley, R.W. Lichvar, and C.V. Noble. ERDC/EL TR-08-28. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- U.S. Department of the Interior, Fish and Wildlife Service. 1988. *National List of Plant Species That Occur in Wetlands: California (Region 0)*. Biological Report 88 (26.10).
- _____. n.d. National Wetlands Inventory. www.wetlandsfws.er.usgs.gov.
- U.S. Geological Survey. 1958. Lakeport, California, 7.5-minute quadrangle sheet. Photo-revised 1978.
- Western Regional Climate Center (WRCC). 2010. Lakeport, CA. www.wrcc.dri.edu/climsum.html.

APPENDIX A

Wetland Determination Forms

WETLAND DETER	KIVIINATI	ON DAT	A FORM	– Arid West Regi	on	
Project/Site: Lake County Courthouse Site		City/Coun	ty: Lake Coι	ınty	Sampling Date:	4-30-10
Applicant/Owner: Administrative Office of the Courts		3,34		State: CA	Sampling Point	: DP1
Investigator(s): Don Burk		Section, T	ownship, Ra	nge: Section 25, Towr	ıship 14 North, Rar	nge 10 West
Landform (hillslope, terrace, etc.): Terrace		Local reli	ef (concave,	convex, none):	Concave SI	lope (%):1
Subregion (LRR): C	_ Lat: 39°	2' 3.89"	300 000	Long: 122° 55' 12.06	6" Dat	tum: NAD83
Soil Map Unit Name: Henneke-Montara-Rock Outcrop Cor	mplex, 15-3	0 percent	slopes	NWI class	sification: N.A.	700
Are climatic / hydrologic conditions on the site typical for this						
Are Vegetation, Soil, or Hydrologys				"Normal Circumstances		X No
Are Vegetation, Soil, or Hydrology r				eeded, explain any ans		
SUMMARY OF FINDINGS – Attach site map						ioaturos etc
Solvinari Or Findings - Attach site map	Silowing	Sampii	ng ponit i	ocations, transec	,ts, important i	eatures, etc
Hydrophytic Vegetation Present? Yes X N		ls i	the Sampled	l Area		
Hydric Soil Present? Yes X N		1000	hin a Wetlar		NoX	
Wetland Hydrology Present? Yes X N	o					
Remarks: Although wetland characteristics are evident, t	the sample	site is at t	he lower end	d of a constructed drain	nage ditch, and is b	est defined as
a non-wetland water of the United States.						
VEGETATION						
Tree Stratum (Use scientific names.)			nt Indicator ? Status	Dominance Test we	orksheet:	
1. Ose scientific frames.)				Number of Dominan That Are OBL, FACN		2 (A)
2.						,,,
3.				Total Number of Dor Species Across All S	ninant Strata:	2 (B)
4		(a)		Percent of Dominant		
Total Cover	r:	•		That Are OBL, FAC		100 (A/B)
Sapling/Shrub Stratum 1				Prevalence Index w	vorksheet:	
2.					of: Multip	ply by:
3.				OBL species		
4.				FACW species	x 2 =	
5				FAC species	x 3 =	
Total Cover Herb Stratum	7	·		FACU species		
1 Lolium multiflorum ssp. perenne	30	Yes	FAC*	UPL species		
2. Hordeum marinum ssp. gussoneaum (=H. hystrix)	60	Yes	FAC	Column Totals:	(A)	(B)
3. Vulpia microstachys var. pauciflora	8	No	NL	Prevalence Inc	dex = B/A =	 (
4. Achyrachaena mollis	2	No	FAC	Hydrophytic Veget	ation Indicators:	
5				X Dominance Tes		
6		9		Prevalence Inde		
7					daptations¹ (Provid arks or on a separat	
8Total Cover		-		Problematic Hyd	drophytic Vegetation	n ¹ (Explain)
Woody Vine Stratum		•				
Ī		· ·		Indicators of hydric	soil and wetland hy	drology must
2				be present.		
Total Cover	ï	٠		Hydrophytic Vegetation		
% Bare Ground in Herb Stratum0 % Cover	r of Biotic C	rust		Present?	Yes X No_	
Remarks:				1		

US Army Corps of Engineers Arid West – Version 11-1-2006

SOIL	Sampling Point:	DP1
------	-----------------	-----

022.7 Av. 1880.0	inption: (Describe)	to the depth i			or confirm	the absence	or indicators.)
Depth (inches)	Matrix Color (moist)		Color (moist)	eatures % Type ¹	Loc ²	Texture	Remarks
0-2	7.5YR 2.5/2	100				loam	
2-4	5YR 3/1	100				2 2.	
4-14	7.5YR 3/2	100					:
				<u> </u>	<u>-</u> 90	-	
<u> </u>	Al e	-			 	,———	1 on the second of the second
(1	23-	-				D	. ———
12	7-					7	
	3) ()	<u> </u>
						N a	
¹ Type: C=Co	oncentration, D=Dep	letion, RM=Re	duced Matrix. ² L	ocation: PL=Pore	Lining, R	C=Root Chan	nel, M=Matrix.
Hydric Soil I	ndicators: (Application	able to all LR	Rs, unless otherw	ise noted.)		Indicators	for Problematic Hydric Soils ³ :
Histosol	The second second		Sandy Redox				Muck (A9) (LRR C)
	pipedon (A2)		Stripped Matri			30 - 30 sand sand	Muck (A10) (LRR B)
Black Hi			Loamy Mucky				ced Vertic (F18)
	n Sulfide (A4) I Layers (A5) (LRR (•)	Loamy Gleyer Depleted Matr				arent Material (TF2) (Explain in Remarks)
	ck (A9) (LRR D)	•)	Redox Dark S	10000000 000000		Outer	(Explain in Kemarks)
C TOCOGNESS SEEDS OF	Below Dark Surface	e (A11)	Depleted Dark	355 Mari (1855 SS) Mari (1877 M)			
	rk Surface (A12)	,	X Redox Depres				
Sandy M	lucky Mineral (S1)		Vernal Pools	F9)		³ Indicators	of hydrophytic vegetation and
20 00 000	leyed Matrix (S4)			· · · · · · · · · · · · · · · · · · ·		wetland	d hydrology must be present.
Restrictive L	ayer (if present):						
Type:							V
Depth (ind	ches):					Hydric Soil	Present? Yes X No
Remarks:							
HYDROLO	GY						
Wetland Hyd	drology Indicators:					Seco	ndary Indicators (2 or more required)
Primary India	ators (any one indica	ator is sufficier	nt)			v	Vater Marks (B1) (Riverine)
Surface	Water (A1)		Salt Crust (B	11)			Sediment Deposits (B2) (Riverine)
	ter Table (A2)		Biotic Crust (de la constanta de la constant			Orift Deposits (B3) (Riverine)
Saturation				rtebrates (B13)			Orainage Patterns (B10)
100	arks (B1) (Nonriveri	ne)	Hydrogen St				Dry-Season Water Table (C2)
X Sedimer	t Deposits (B2) (Nor	nriverine)	Oxidized Rhi	zospheres along l	iving Root	ts (C3) T	hin Muck Surface (C7)
Drift Dep	osits (B3) (Nonriver	ine)	Presence of	Reduced Iron (C4)	_ 0	Crayfish Burrows (C8)
Surface	Soil Cracks (B6)		Recent Iron	Reduction in Plow	ed Soils (C	26) 8	Saturation Visible on Aerial Imagery (C9)
Inundatio	on Visible on Aerial I	magery (B7)	Other (Expla	in in Remarks)		8	Shallow Aquitard (D3)
X Water-S	tained Leaves (B9)					F	FAC-Neutral Test (D5)
Field Observ	vations:						
Surface Wate	er Present? Y	es No	X Depth (inch	es):	_		
Water Table	Present? Y	es No	X Depth (inch	es):	_		
Saturation Pr		es No	X Depth (inch	es):	_ Wetla	and Hydrolog	y Present? Yes X No
(includes cap	oillary fringe) corded Data (stream	daude monite	oring well serial ob	otos previous ins	nections) i	if available	
Describe Ker	Jordon Data (Stredill	gaage, monit	omig well, aellal pli	otos, previous ilisi	, , , , , , , , , , , , , , , , , , ,	n avallable.	
Remarks:							
iveillains.							

WETLAND DETER	RIVIINATIO	ON DATA	A FORIVI	– Arid West Regi	on		
Project/Site: Lake County Courthouse Site	(City/County	Lake Cou	ınty	Sampling	Date: <u>4-30-10</u>)
Applicant/Owner: Administrative Office of the Courts		5.541 79		State: CA	Sampling [Point:DI	P1
Investigator(s): Don Burk		Section, To	wnship, Ra	nge: Section 25, Town	nship 14 North	, Range 10 W	'est
Landform (hillslope, terrace, etc.): Terrace		Local relie	f (concave,	convex, none):	Concave	Slope (%):	1
Subregion (LRR): C	_ Lat: 39°	2' 3.89"		Long: 122° 55' 12.00	6"	Datum: NAC)83
Soil Map Unit Name: Henneke-Montara-Rock Outcrop Cor	mplex, 15-3	0 percent s	lopes	NWI class	sification: N.A.		
Are climatic / hydrologic conditions on the site typical for this							
Are Vegetation, Soil, or Hydrology s	ignificantly	disturbed?	No Are	"Normal Circumstance	s" present? Y	es X No	o
Are Vegetation, Soil, or Hydrology n				eeded, explain any ans			
SUMMARY OF FINDINGS – Attach site map	showina	samplin	a point l	ocations transec	ets importa	ant feature	s etc
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: Although wetland characteristics are evident, to a non-wetland water of the United States.	o o	Is th	ne Sampled nin a Wetlan	I Area nd? Yes	No	<u> </u>	
VEGETATION							
Tree Stratum (Use scientific names.)	Absolute % Cover		Indicator	Dominance Test w	orksheet:		
1				Number of Dominan That Are OBL, FAC\		2	(A)
2.							(, ,
3				Total Number of Dor Species Across All S		2	(B)
4Total Cover			10.5 	Percent of Dominant That Are OBL, FACN		100	(A/B)
Sapling/Shrub Stratum 1				Prevalence Index v	worksheet:		
2.				Total % Cover of		Multiply by:	
3.				OBL species			
4.				FACW species	x 2 =	=	is
5				FAC species	x 3 =	=	- (X
Total Cover				FACU species			-
Herb Stratum 1. Lolium multiflorum ssp. perenne	30	Yes	FAC*	UPL species			
2. Hordeum marinum ssp. gussoneaum (=H. hystrix)	60	Yes	FAC	Column Totals:	(A)	03	_ (B)
3. Vulpia microstachys var. pauciflora	8	No	NL	Prevalence Inc	dex = B/A = _		_
4. Achyrachaena mollis	2	No	FAC	Hydrophytic Veget	ation Indicato	rs:	
5				X Dominance Tes			
6		99		Prevalence Inde			
7	_	(-		Morphological A	Adaptations¹(P arks or on a se	rovide support	ing
8				Problematic Hyd			n)
Total Cover Woody Vine Stratum	100				opyo o o go	(_,,p.z.	,
1.				¹ Indicators of hydric	soil and wetlar	nd hydrology n	nust
2.				be present.			
Total Cover				Hydrophytic Vegetation Present?	Yes X	No	
Remarks:							

US Army Corps of Engineers Arid West – Version 11-1-2006

SOIL	Sampling Point:	DP1
------	-----------------	-----

022 2 Kr. 1885	ription: (Describe	to the depth i			or confirm	the absence	or indicators.)
Depth (inches)	Matrix Color (moist)		Color (moist)	Features <u>%</u> _Type ¹ _	_Loc ²	Texture	Remarks
0-2	7.5YR 2.5/2	100				loam	
2-4	5YR 3/1	100				<u> </u>	
4-14	7.5YR 3/2	100	·			5 2	
				· · · · · · · · · · · · · · · · · · ·		·	
(-	No.					X II	R d
()	t 					D 	·
(2	n				·	·	
<u> </u>	3				·) <u>-</u>	
		· · _ ·					
¹ Type: C=Co	oncentration, D=Dep	etion, RM=Re	duced Matrix. 2	Location: PL=Por	e Lining, R	C=Root Chan	nel, M=Matrix.
Hydric Soil	Indicators: (Applic	able to all LR	Rs, unless otherv	rise noted.)		Indicators	s for Problematic Hydric Soils ³ :
Histosol	The state of the s		Sandy Redox				Muck (A9) (LRR C)
	pipedon (A2)		Stripped Matr			30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	Muck (A10) (LRR B)
	stic (A3)		Loamy Mucky				ced Vertic (F18)
	n Sulfide (A4) I Layers (A5) (LRR (•)	Loamy Gleye Depleted Mat				Parent Material (TF2) (Explain in Remarks)
	ck (A9) (LRR D)	•)	Redox Dark S	20.000 St. 10.00 P.C.		011161	(Explain in Kemarks)
to t	d Below Dark Surface	e (A11)	AL BANKSANCE CAPCIANCE C	k Surface (F7)			
	ark Surface (A12)		X Redox Depre				
Sandy M	lucky Mineral (S1)		Vernal Pools	(F9)		³ Indicators	of hydrophytic vegetation and
20	Bleyed Matrix (S4)					wetland	d hydrology must be present.
Restrictive I	_ayer (if present):						
Type:							~
Depth (inc	ches):		 ,			Hydric Soi	I Present? Yes X No
Remarks:							
HYDROLO	GY						
Wetland Hyd	drology Indicators:					Seco	ndary Indicators (2 or more required)
Primary India	ators (any one indic	ator is sufficie	nt)			\	Water Marks (B1) (Riverine)
Surface	Water (A1)		Salt Crust (E	311)			Sediment Deposits (B2) (Riverine)
	ter Table (A2)		Biotic Crust	and the state of t			Orift Deposits (B3) (Riverine)
Saturation				ertebrates (B13)			Orainage Patterns (B10)
100	arks (B1) (Nonriver i	ne)	Hydrogen S				Dry-Season Water Table (C2)
X Sedimer	nt Deposits (B2) (No i	nriverine)	Oxidized Rh	izospheres along	Living Roo	ts (C3) 1	Thin Muck Surface (C7)
Drift Dep	osits (B3) (Nonriver	ine)	Presence of	Reduced Iron (C4	.)	(Crayfish Burrows (C8)
Surface	Soil Cracks (B6)		Recent Iron	Reduction in Plow	ed Soils (C	26) 8	Saturation Visible on Aerial Imagery (C9)
Inundati	on Visible on Aerial I	magery (B7)	Other (Expla	ain in Remarks)		8	Shallow Aquitard (D3)
X Water-S	tained Leaves (B9)					F	FAC-Neutral Test (D5)
Field Obser	vations:						
Surface Wate	er Present? Y	es No	X Depth (inch	ies):			
Water Table	Present? Y	es No	X Depth (inch	ies):			
Saturation Pi			X Depth (inch		0.5000 2000	and Hydrolog	y Present? Yes X No
(includes cap	oillary fringe) corded Data (stream	golige monit	oring well coriol at	otos previous ins	nections)	if available:	
Describe Re	corded Data (stream	gauge, monit	oring well, aerial pr	lotos, previous ins	pections), i	ii avallable.	
Domorico:							
Remarks:							

Applicant/Owner: Administrative Office of the Courts Investigator(s): Don Burk Landform (hillslope, terrace, etc.): Terrace Local relief (concave, convex, none): Concave Slope (%): 1		:RIVIINA I I	ON DA	IA FURIVI	– Aria West Regio	' n '	
Section 1, Section Township Range Section 2, Township A North, Range 10 West Landform (fillslope, terrace, etc.) Township Landform Landform (fillslope, terrace) Landform (f			City/Coun	ity: Lake Cou	ınty	Sampling Date: _4	-30-10
Load from (hillstope, terrace, etc.): Terrace	Applicant/Owner: Administrative Office of the Courts				State: CA	_ Sampling Point: _	DP1
Subregion (LRR): C	Investigator(s): Don Burk		Section, 1	Township, Ra	nge: Section 25, Towns	ship 14 North, Range	e 10 West
Subregion (LRR): C	Landform (hillslope, terrace, etc.): Terrace		Local reli	ief (concave,	convex, none):C	oncave Slop	e (%):1
Soil Map Unit Name Henneke-Montrara Rock Outcrop Complex, 15-30 percent slopes NW classification: N.A.	Subregion (LRR): C	Lat: 39°	2' 3.89"	300	Long: 122° 55' 12.06'	" Datum	n: NAD83
Are climatic / hydrologic conditions on the site typical for this time of year? Yes X No (fino, explain in Remarks.) Are Vegetation Soil or Hydrology significantly disturbed? No (fine edd, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes X No Is the Sampled Area within a Wetland? Yes No X Wetland Hydrology Present? Yes X No Secure of the United States. VEGETATION Tee Stratum (Use scientific names.) 1.	Soil Map Unit Name: Henneke-Montara-Rock Outcrop Co	omplex, 15-3	0 percent	t slopes	NWI classi	fication: N.A.	
Are Vegetation, Soil, or Hydrology naturally problematic? No							
SUMMARY OF FINDINGS — Attach site map showing sampling point locations, transects, important features, etc Hydrophytic Vegetation Present? Yes X No Welfand Hydrocogy Present? Yes X No X No X Welfand Hydrocogy Present? Yes X No X No X Welfand Hydrocogy Present? Yes X No X N	Are Vegetation, Soil, or Hydrology	significantly	disturbed	? No Are "	'Normal Circumstances'	present? Yes X	No
Hydrophytic Vegetation Present? Yes X No Weltand Hydrology Present? Yes X No Deminant Indicator State Within a Wetland? Yes No X No X No X Weltand Characteristics are evident, the sample site is at the lower end of a constructed drainage ditch, and is best defined as a non-weltand water of the United States. WEGETATION Tree Stratum (Use scientific names.) 1.					eded, explain any answ	vers in Remarks.)	
Hydric Soil Present? Yes X No	SUMMARY OF FINDINGS – Attach site map	showing	sampli	ing point l	ocations, transect	ts, important fea	itures, etc
Hydric Soil Present? Yes X No	Hydrophytic Vegetation Present? Yes X	No					
Welland Hydrology Present? Yes X No No No No No No No			1000	Control Additional Section Control		N X	
Although wetland characteristics are evident, the sample site is at the lower end of a constructed drainage ditch, and is best defined as a non-wetland water of the United States. VEGETATION Tree Stratum (Use scientific names.) 1.	199		W	tnin a vvetiar	ia? Yes	No^_	
Dominant Indicator		le site is at th	ne lower e	end of a cons	tructed drainage ditch,	and is best defined a	is a
Tree Stratum (Use scientific names.)	VEGETATION	Absolute	Dansina		Daminana Tastus	ulvala a a 4 v	
Total Number of Dominant Species Across All Strata: 2	10 A	% Cover	Species	? Status	Number of Dominant	Species	(A)
A	2		W <u>*</u>		Total Number of Dom	ninant	
Total Cover: Tota					2000 40 30004 Au DA	3.540 5.4	(=)
Total Cover of the stratum Cover of th	Total Cove						(A/B)
3.					Prevalence Index w	orksheet:	
4.	2				Total % Cover of	: Multiply	by:
Total Cover:	3		-	_0=0	200		
Herb Stratum 1. Lolium multiflorum ssp. perenne 30 Yes FAC* UPL species x 5 =							
Herb Stratum 1. Lolium multiflorum ssp. perenne 30 Yes FAC* 2. Hordeum marinum ssp. gussoneaum (=H. hystrix) 60 Yes FAC 3. Vulpia microstachys var. pauciflora 8 No NL Prevalence Index = B/A =					100		
1. Lolium multiflorum ssp. perenne 30 Yes FAC* Hordeum marinum ssp. gussoneaum (=H. hystrix) 60 Yes FAC 3. Vulpia microstachys var. pauciflora 8 No NL Prevalence Index = B/A =		er:	•		32 39		
2. Hordeum marinum ssp. gussoneaum (=H. hystrix) 60 Yes FAC 3. Vulpia microstachys var. pauciflora 8 No NL 4. Achyrachaena mollis 2 No FAC 5.		30	Yes	FAC*	A1500 - MASSONAN MASSONAN ME		
4. Achyrachaena mollis 2 No FAC Hydrophytic Vegetation Indicators: X Dominance Test Is >50% Prevalence Index is ≤3.0¹ Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation¹ (Explain) Woody Vine Stratum 1		60	Yes	FAC	Coldinii Totala.	(^,	(D)
X Dominance Test is >50%	3. Vulpia microstachys var. pauciflora		No	NL_	Prevalence Inde	ex = B/A =	
6	4. Achyrachaena mollis	_ 2	No	FAC			
7 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) Noody Vine Stratum 1 Total Cover: Indicators of hydric soil and wetland hydrology must be present. Total Cover: Hydrophytic Vegetation Total Cover: Hydrophytic Vegetation Yes_X No	5				C - C CONTRACTOR CONTR		
8	6	_	7 .		N		
Total Cover:100 Problematic Hydrophytic Vegetation* (Explain) 1 * Indicators of hydric soil and wetland hydrology must be present. 2 * Total Cover: * Hydrophytic Vegetation* **Weare Ground in Herb Stratum 0	SV Visit		-				
Moody Vine Stratum			-	- 0	Problematic Hydr	ophytic Vegetation 1 (Explain)
2		er. <u>100</u>	-				
Total Cover: Hydrophytic We Bare Ground in Herb Stratum 0 % Cover of Biotic Crust Present? Yes X No			· -			oil and wetland hydro	ology must
% Bare Ground in Herb Stratum 0 % Cover of Biotic Crust Present? Yes X No	eune-	— ——— er:			Hydrophytic		
Remarks:					Vegetation Present?	'esX No	
	Remarks:						

US Army Corps of Engineers Arid West – Version 11-1-2006

SOIL	Sampling Point:	DP1
------	-----------------	-----

022 2 Kr. 1885	ription: (Describe	to the depth i			or confirm	the absence	or indicators.)
Depth (inches)	Matrix Color (moist)		Color (moist)	Features <u>%</u> _Type ¹ _	_Loc ²	Texture	Remarks
0-2	7.5YR 2.5/2	100				loam	
2-4	5YR 3/1	100				à 	
4-14	7.5YR 3/2	100	·			5 2	
				· · · · · · · · · · · · · · · · · · ·		·	
(-	No.					X II	R d
()	t 					D 	·
(2	n				·	·	
<u> </u>	3				·) <u>-</u>	
		· · _ ·					
¹ Type: C=Co	oncentration, D=Dep	etion, RM=Re	duced Matrix. 2	Location: PL=Por	e Lining, R	C=Root Chan	nel, M=Matrix.
Hydric Soil	Indicators: (Applic	able to all LR	Rs, unless otherv	rise noted.)		Indicators	s for Problematic Hydric Soils ³ :
Histosol	The state of the s		Sandy Redox				Muck (A9) (LRR C)
	pipedon (A2)		Stripped Matr			30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	Muck (A10) (LRR B)
	stic (A3)		Loamy Mucky				ced Vertic (F18)
	n Sulfide (A4) I Layers (A5) (LRR (•)	Loamy Gleye Depleted Mat				Parent Material (TF2) (Explain in Remarks)
	ck (A9) (LRR D)	•)	Redox Dark S	20.000 St. 10.00 P.C.		011161	(Explain in Kemarks)
to t	d Below Dark Surface	e (A11)	AL BANKSANCE CAPCIANCE C	k Surface (F7)			
	ark Surface (A12)		X Redox Depre				
Sandy M	lucky Mineral (S1)		Vernal Pools	(F9)		³ Indicators	of hydrophytic vegetation and
20	Bleyed Matrix (S4)					wetland	d hydrology must be present.
Restrictive I	_ayer (if present):						
Type:							~
Depth (inc	ches):		 ,			Hydric Soi	I Present? Yes X No
Remarks:							
HYDROLO	GY						
Wetland Hyd	drology Indicators:					Seco	ndary Indicators (2 or more required)
Primary India	ators (any one indic	ator is sufficie	nt)			\	Water Marks (B1) (Riverine)
Surface	Water (A1)		Salt Crust (E	311)			Sediment Deposits (B2) (Riverine)
	ter Table (A2)		Biotic Crust	and the state of t			Orift Deposits (B3) (Riverine)
Saturation				ertebrates (B13)			Orainage Patterns (B10)
100	arks (B1) (Nonriver i	ne)	Hydrogen S				Dry-Season Water Table (C2)
X Sedimer	nt Deposits (B2) (No i	nriverine)	Oxidized Rh	izospheres along	Living Roo	ts (C3) 1	Thin Muck Surface (C7)
Drift Dep	osits (B3) (Nonriver	ine)	Presence of	Reduced Iron (C4	.)	(Crayfish Burrows (C8)
Surface	Soil Cracks (B6)		Recent Iron	Reduction in Plow	ed Soils (C	26) 8	Saturation Visible on Aerial Imagery (C9)
Inundati	on Visible on Aerial I	magery (B7)	Other (Expla	ain in Remarks)		8	Shallow Aquitard (D3)
X Water-S	tained Leaves (B9)					F	FAC-Neutral Test (D5)
Field Obser	vations:						
Surface Wate	er Present? Y	es No	X Depth (inch	ies):			
Water Table	Present? Y	es No	X Depth (inch	ies):			
Saturation Pi			X Depth (inch		0.5000 2000	and Hydrolog	y Present? Yes X No
(includes cap	oillary fringe) corded Data (stream	golige monit	oring well coriol at	otos previous ins	nections)	if available:	
Describe Re	corded Data (stream	gauge, monit	oring well, aerial pr	lotos, previous ins	pections), i	ii avallable.	
Domorico:							
Remarks:							

APPENDIX B

Representative Photos

Representative Photos of On-site Waters

4:SW looking southeast 2/8/10

5:SW looking southeast 2/8/10

Biotic crust in 5:SW 4/29/10

1:CD looking west 4/29/10

Lower terminus of 1:CD and 2:CD, with discharge to uplands 4/29/10

3:CD looking north 4/29/10

6:CD (foreground) looking northeast 4/29/10

8:CD looking west toward culvert 3/17/10

Storm drain inlet at terminus of 8:CD 4/29/10

Non-jurisdictional drainage near 7:CD with no evidence of OHWM 4/29/10